Rapid Reduction and Return of Surface Insulin Receptors After Exposure to Brief Pulses of Insulin in Perifused Rat Hepatocytes

Author:

Goodner Charles J1,Sweet Ian R1,Harrison H Courtenay1

Affiliation:

1. Departments of Medicine and Physiology and Biophysics, University of Washington Seattle, Washington

Abstract

Hepatic receptors are normally exposed to discrete pulses of insulin and glucagon at intervals of 8 to 16 min. Using a multicolumn system for perifusing hepatocytes, we investigated the effect of this pattern on the normal processing of the insulin receptor. Surface-receptor binding was measured in acid-washed cells harvested from individual columns. The number of high-affinity surface receptors fell to a nadir 1 min after the end of a 3-min square-wave pulse of insulin. The maximum reduction reached 45% of baseline at amplitudes of 1000 μU/ml or above. The number of surface binding sites returned to baseline 15 min after the end of the pulse, but the affinity constant of the high-affinity receptor was unchanged. The reduction of surface binding was dose dependent, with an ED50, of 251 ± 34 μU/ml. Prolonging the pulse to 60 min did not affect the nadir or the rate of restoration of the surface-receptor population. The change in surface binding was reduced at 15°C and abolished at 4°C. After a pulse, the pattern of change was a period of rapid decline to a nadir (t1/2 ≤ 1 min) that persisted for 3–5 min, followed by restoration of surface binding that reached baseline in 10–15 min. This same pattern was present after six ED95 pulses delivered at intervals of 15 min. These data indicate that the internalization of hepatocyte surface receptors and their recycling and reinsertion into the plasma membrane can be entrained to pulses at the physiologic pulse frequency.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3