Bradykinin Augments Insulin-Stimulated Glucose Transport in Rat Adipocytes via Endothelial Nitric Oxide Synthase–Mediated Inhibition of Jun NH2-Terminal Kinase

Author:

Beard Kristin M.12,Lu Huogen12,Ho Karen12,Fantus I. George12

Affiliation:

1. Department of Medicine and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

2. Banting and Best Diabetes Centre, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada

Abstract

An increase in bradykinin has been suggested to contribute to the enhanced insulin sensitivity observed in the presence of ACE inhibitors. To investigate a potential direct, nonvascular effect on an insulin target tissue, the effect of bradykinin on glucose uptake and insulin signaling was studied in primary rat adipocytes. Whereas basal glucose uptake was not altered, bradykinin augmented insulin-stimulated glucose uptake twofold, which was blocked by HOE-140, a bradykinin B2 receptor antagonist. The bradykinin effect on glucose uptake was nitric oxide (NO) dependent, mimicked by NO donors and absent in adipocytes from endothelial NO synthase−/− mice. Investigation of insulin signaling revealed that bradykinin enhanced insulin receptor substrate-1 (IRS-1) Tyr phosphorylation, Akt/protein kinase B phosphorylation, and GLUT4 translocation. In contrast, insulin-stimulated extracellular signal–regulated kinase1/2 and Jun NH2-terminal kinase (JNK) activation were decreased in the presence of bradykinin, accompanied by decreased IRS-1 Ser307 phosphorylation. Furthermore, bradykinin did not enhance insulin action in the presence of the JNK inhibitor, SP-600125, or in adipocytes from JNK1−/− mice. These data indicate that bradykinin enhances insulin sensitivity in adipocytes via an NO-dependent pathway that acts by modulating the feedback inhibition of insulin signaling at the level of IRS-1.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3