Ablation of PI3K p110-α Prevents High-Fat Diet–Induced Liver Steatosis

Author:

Chattopadhyay Mohar1,Selinger Elzbieta S.2,Ballou Lisa M.2,Lin Richard Z.123

Affiliation:

1. Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York

2. Department of Medicine, Stony Brook University, Stony Brook, New York

3. Department of Veterans Affairs Medical Center, Northport, New York

Abstract

OBJECTIVE To determine whether the phosphoinositide 3-kinase (PI3K) catalytic subunits p110-α and p110-β play a role in liver steatosis induced by a high-fat diet (HFD). RESEARCH DESIGN AND METHODS Liver-specific p110-α and p110-β knockout mice and control animals for each group were fed an HFD or normal chow for 8 weeks. Biochemical assays and quantitative real-time PCR were used to measure triglyceride, expression of lipogenic and gluconeogenic genes, and activity of protein kinases downstream of PI3K in liver lysates. Fatty acid uptake and incorporation into triglycerides were assessed in isolated hepatocytes. RESULTS Hepatic triglyceride levels in HFD-fed p110-α−/− mice were 84 ± 3% lower than in p110-α+/+ mice, whereas the loss of p110-β did not significantly alter liver lipid accumulation. p110-α−/− livers also showed a reduction in atypical protein kinase C activity and decreased mRNA and protein expression of several lipogenic genes. Hepatocytes isolated from p110-α−/− mice exhibited decreased palmitate uptake and reduced fatty acid incorporation into triglycerides as compared with p110-α+/+ cells, and hepatic expression of liver fatty acid binding protein was lower in p110-α−/− mice fed the HFD as compared with controls. Ablation of neither p110-α nor p110-β ameliorated glucose intolerance induced by the HFD, and genes involved in gluconeogenesis were upregulated in the liver of both knockout animals. CONCLUSIONS PI3K p110-α, and not p110-β, promotes liver steatosis in mice fed an HFD. p110-α might exert this effect in part through activation of atypical protein kinase C, upregulation of lipogenesis, and increased uptake of fatty acids.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3