Growth Differentiation Factor-5 Promotes Brown Adipogenesis in Systemic Energy Expenditure

Author:

Hinoi Eiichi1,Nakamura Yukari1,Takada Saya1,Fujita Hiroyuki1,Iezaki Takashi1,Hashizume Syota1,Takahashi Satoshi1,Odaka Yoshiaki1,Watanabe Takumi1,Yoneda Yukio1

Affiliation:

1. Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan

Abstract

Although growth differentiation factor-5 (GDF5) has been implicated in skeletal development and joint morphogenesis in mammals, little is known about its functionality in adipogenesis and energy homeostasis. Here, we show a critical role of GDF5 in regulating brown adipogenesis for systemic energy expenditure in mice. GDF5 expression was preferentially upregulated in brown adipose tissues from inborn and acquired obesity mice. Transgenic overexpression of GDF5 in adipose tissues led to a lean phenotype and reduced susceptibility to diet-induced obesity through increased systemic energy expenditure. Overexpression of GDF5 facilitated the development of brown fat-like cells, called brite or beige cells, along with the expression of uncoupling protein-1 in inguinal subcutaneous white adipose tissue. In mutant mice harboring the dominant-negative GDF5, marked impairment in energy expenditure and thermogenesis was seen under obesogenic conditions. Recombinant GDF5 promoted brown adipogenesis through the mothers against decapentaplegic homolog (Smad) and peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) pathways after activation of bone morphogenetic protein receptor (BMPR). These results suggest that brown adipogenesis and energy homeostasis are both positively regulated by the GDF5/BMPR/Smad/PGC-1α signaling pathway in adipose tissues. Modulation of these pathways might be an effective therapeutic strategy for obesity and type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3