Quantification and Three-Dimensional Imaging of the Insulitis-Induced Destruction of β-Cells in Murine Type 1 Diabetes

Author:

Alanentalo Tomas1,Hörnblad Andreas1,Mayans Sofia23,Karin Nilsson Anna2,Sharpe James4,Larefalk Åsa2,Ahlgren Ulf1,Holmberg Dan23

Affiliation:

1. Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden;

2. Department of Medical Biosciences, Umeå University, Umeå, Sweden;

3. Department of Disease Biology, Faculty of Life Science, Copenhagen University, Copenhagen, Denmark;

4. Catalan Institute of Research and Advanced Studies (ICREA), EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Barcelona, Spain.

Abstract

OBJECTIVE The aim of this study was to refine the information regarding the quantitative and spatial dynamics of infiltrating lymphocytes and remaining β-cell volume during the progression of type 1 diabetes in the nonobese diabetic (NOD) mouse model of the disease. RESEARCH DESIGN AND METHODS Using an ex vivo technique, optical projection tomography (OPT), we quantified and assessed the three-dimensional spatial development and progression of insulitis and β-cell destruction in pancreata from diabetes-prone NOD and non–diabetes-prone congenic NOD.H-2b mice between 3 and 16 weeks of age. RESULTS Together with results showing the spatial dynamics of the insulitis process, we provide data of β-cell volume distributions down to the level of the individual islets and throughout the pancreas during the development and progression of type 1 diabetes. Our data provide evidence for a compensatory growth potential of the larger insulin+ islets during the later stages of the disease around the time point for development of clinical diabetes. This is in contrast to smaller islets, which appear less resistant to the autoimmune attack. We also provide new information on the spatial dynamics of the insulitis process itself, including its apparently random distribution at onset, the local variations during its further development, and the formation of structures resembling tertiary lymphoid organs at later phases of insulitis progression. CONCLUSIONS Our data provide a powerful tool for phenotypic analysis of genetic and environmental effects on type 1 diabetes etiology as well as for evaluating the potential effect of therapeutic regimes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3