The ATGL Gene Is Associated With Free Fatty Acids, Triglycerides, and Type 2 Diabetes

Author:

Schoenborn Veit1,Heid Iris M.23,Vollmert Caren2,Lingenhel Arno1,Adams Ted D.4,Hopkins Paul N.4,Illig Thomas2,Zimmermann Robert5,Zechner Rudolf5,Hunt Steven C.4,Kronenberg Florian1

Affiliation:

1. Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria

2. GSF-National Research Center for Environment and Health, Institute of Epidemiology, Neuherberg, Germany

3. Institute of Biostatistics and Epidemiology, Ludwig-Maximilian-Universität München, Munich, Germany

4. Department of Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, Utah

5. Institute of Molecular Biosciences, Karl-Franzens-University, Graz, Austria

Abstract

Adipose triglyceride lipase (ATGL) was recently described to predominantly perform the initial step in triglyceride hydrolysis and therefore seems to play a pivotal role in the lipolytic catabolism of stored fat in adipose tissue. In the first study investigating genetic variations within the ATGL gene in humans, 12 polymorphisms identified via sequencing and database search were studied in 2,434 individuals of European ancestry from Utah. These polymorphisms and their haplotypes were analyzed in subjects not taking diabetes medication for association with plasma free fatty acids (FFAs) as primary analysis, as well as triglycerides and glucose as a secondary analysis (n = 1,701, 2,193, or 2,190, respectively). Furthermore, type 2 diabetes (n = 342 of 2,434) was analyzed as an outcome. FFA concentrations were significantly associated with several single nucleotide polymorphisms (SNPs) of ATGL (P values from 0.015 to 0.00003), consistent with additive inheritance. The pattern was similar when considering triglyceride concentrations. Furthermore, two SNPs showed associations with glucose levels (P < 0.00001) and risk of type 2 diabetes (P < 0.05). Haplotype analysis supported and extended the shown SNP association analyses. These results complement previous findings of functional studies in mammals and elucidate a potential role of ATGL in pathways involved in components of the metabolic syndrome.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3