Involvement of Heat Shock Factor-1 in Glycated LDL–Induced Upregulation of Plasminogen Activator Inhibitor-1 in Vascular Endothelial Cells

Author:

Zhao Ruozhi1,Shen Garry X.1

Affiliation:

1. From the Departments of Internal Medicine and Physiology, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

Coronary artery disease is the predominant cause of death in diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of plasminogen activators. Heat shock protein (Hsp) was upregulated in uncontrolled diabetic patients. Our previous studies demonstrated that glycated LDL stimulated the generation of PAI-1 from vascular endothelial cells. The present study examined the effect of glycated LDL on the expression of heat shock factor-1 (HSF1), a physiological transcription factor of Hsp, and the involvement of HSF-1 in glycated LDL–induced production of PAI-1 in cultured human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs). Treatment with glycated LDL increased the expression of HSF1 and Hsp-70 compared with LDL in subconfluent HCAECs or HUVECs, and that was associated with an increase of PAI-1 expression. The transfection of HSF1 gene enhanced the expression of PAI-1 in endothelial cells. Small interference RNA against HSF1 prevented glycated LDL–induced upregulation of PAI-1 in HCAECs or HUVECs. Glycated LDL increased the binding of a nuclear protein to the PAI-1 promoter. The nuclear protein–DNA complex was supershifted by HSF1 antibody. The presence of an antioxidant, butylated hydroxytulene, during the glycation of LDL prevented glycated LDL–induced increases of the expression of HSF1 or PAI-1 in endothelial cells. The results suggest that HSF-1 is involved in glycated LDL–induced upregulation of PAI-1 in subconfluent vascular endothelial cells through the binding of HSF1 to PAI-1 promoter. Glyco-oxidation may contribute to glycated LDL–induced expression of HSF1 and PAI-1 in endothelial cells.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3