Metabolic Aberrations Impact Biophysical Integrity of Macromolecular Protein Pools in the Default Mode Network

Author:

Yang Shaolin123,Wu Minjie1,Ajilore Olusola1,Lamar Melissa1,Kumar Anand1

Affiliation:

1. Department of Psychiatry, University of Illinois at Chicago, Chicago, IL

2. Department of Radiology, University of Illinois at Chicago, Chicago, IL

3. Department of Bioengineering, University of Illinois at Chicago, Chicago, IL

Abstract

The brain’s default mode network (DMN), having a high rate of basal energy metabolism, is vulnerable to altered glucose metabolism in type 2 diabetes mellitus (T2DM) due to insulin resistance and chronic hyperglycemia. Previous studies showed that functional connectivity and structural connectivity among the DMN nodal regions are compromised in T2DM. We applied magnetization transfer imaging to examine the impact of T2DM on the biophysical integrity of the DMN. The results showed that the biophysical integrity of macromolecular protein pools in the posterior cingulate cortex (PCC), a central DMN hub region, was selectively compromised in T2DM, whereas the other nodal regions of the DMN, including the medial prefrontal cortex, lateral inferior parietal cortex, precuneus, and medial and lateral temporal cortices, were biophysically intact compared with those of control subjects without diabetes. Furthermore, the degree of biophysical impairment of the PCC correlated with both hyperglycemia and vascular compromise, the two physiological hallmarks of diabetes. These new findings demonstrate that the PCC is vulnerable in the DMN and may shed light on the molecular neurobiology of T2DM and help to elucidate the pathophysiology of diabetes-related cognitive comorbidities and increased risk for dementia.

Funder

National Institute of Mental Health

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3