Chemerin Is a Novel Adipocyte-Derived Factor Inducing Insulin Resistance in Primary Human Skeletal Muscle Cells

Author:

Sell Henrike1,Laurencikiene Jurga2,Taube Annika1,Eckardt Kristin1,Cramer Andrea1,Horrighs Angelika1,Arner Peter2,Eckel Jürgen1

Affiliation:

1. Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany;

2. Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.

Abstract

OBJECTIVE Chemerin is an adipokine that affects adipogenesis and glucose homeostasis in adipocytes and increases with BMI in humans. This study was aimed at investigating the regulation of chemerin release and its effects on glucose metabolism in skeletal muscle cells. RESEARCH DESIGN AND METHODS Human skeletal muscle cells were treated with chemerin to study insulin signaling, glucose uptake, and activation of stress kinases. The release of chemerin was analyzed from in vitro differentiated human adipocytes and adipose tissue explants from 27 lean and 26 obese patients. RESULTS Human adipocytes express chemerin and chemokine-like receptor 1 (CMKLR1) differentiation dependently and secrete chemerin (15 ng/ml from 106 cells). This process is slightly but significantly increased by tumor necrosis factor-α and markedly inhibited by >80% by peroxisome proliferator–activated receptor-γ activation. Adipose tissue explants from obese patients are characterized by significantly higher chemerin secretion compared with lean control subjects (21 and 8 ng from 107 cells, respectively). Chemerin release is correlated with BMI, waist-to-hip ratio, and adipocyte volume. Furthermore, higher chemerin release is associated with insulin resistance at the level of lipogenesis and insulin-induced antilipolysis in adipocytes. Chemerin induces insulin resistance in human skeletal muscle cells at the level of insulin receptor substrate 1, Akt and glycogen synthase kinase 3 phosphorylation, and glucose uptake. Furthermore, chemerin activates p38 mitogen-activated protein kinase, nuclear factor-κB, and extracellular signal–regulated kinase (ERK)-1/2. Inhibition of ERK prevents chemerin-induced insulin resistance, pointing to participation of this pathway in chemerin action. CONCLUSIONS Adipocyte-derived secretion of chemerin may be involved in the negative cross talk between adipose tissue and skeletal muscle contributing to the negative relationship between obesity and insulin sensitivity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3