Affiliation:
1. 1Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital, Okayama, Japan
2. 2Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
Abstract
The beneficial effects of sodium–glucose cotransporter 2 (SGLT2) inhibitors on kidney function are well-known; however, their molecular mechanisms are not fully understood. We focused on 78-kDa glucose-regulated protein (GRP78) and its interaction with SGLT2 and integrin-β1 beyond the chaperone property of GRP78. In streptozotocin (STZ)-induced diabetic mouse kidneys, GRP78, SGLT2, and integrin-β1 increased in the plasma membrane fraction, while they were suppressed by canagliflozin. The altered subcellular localization of GRP78/integrin-β1 in STZ mice promoted epithelial mesenchymal transition (EMT) and fibrosis, which were mitigated by canagliflozin. High-glucose conditions reduced intracellular GRP78, increased its secretion, and caused EMT-like changes in cultured HK2 cells, which were again inhibited by canagliflozin. Urinary GRP78 increased in STZ mice, and in vitro experiments with recombinant GRP78 suggested that inflammation spread to surrounding tubular cells and that canagliflozin reversed this effect. Under normal glucose culture, canagliflozin maintained sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) activity, promoted ER robustness, reduced ER stress response impairment, and protected proximal tubular cells. In conclusion, canagliflozin restored subcellular localization of GRP78, SGLT2, and integrin-β1 and inhibited EMT and fibrosis in DKD. In nondiabetic chronic kidney disease, canagliflozin promoted ER robustness by maintaining SERCA activity and preventing ER stress response failure, and it contributed to tubular protection.
Article Highlights
Funder
Mitsubishi Tanabe Pharma Corporation
Grant-in-Aid for Scientific Research
Japan Kidney Foundation
Publisher
American Diabetes Association