TCF7L2 Regulates Late Events in Insulin Secretion From Pancreatic Islet β-Cells

Author:

da Silva Xavier Gabriela1,Loder Merewyn K.1,McDonald Angela1,Tarasov Andrei I.1,Carzaniga Raffaella2,Kronenberger Katrin2,Barg Sebastian3,Rutter Guy A.1

Affiliation:

1. Section of Cell Biology, Division of Medicine, Faculty of Medicine, Imperial College, London, U.K.;

2. Electron Microscopy Centre, Imperial College London, South Kensington, U.K.;

3. Medical Cell Biology, Uppsala University, Uppsala, Sweden.

Abstract

OBJECTIVE Polymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affect insulin secretion are still unclear. We define the effects of TCF7L2 expression level on mature β-cell function and suggest a potential mechanism for its actions. RESEARCH DESIGN AND METHODS TCF7L2 expression in rodent islets and β-cell lines was altered using RNAi or adenoviral transduction. β-Cell gene profiles were measured by quantitative real-time PCR and the effects on intracellular signaling and exocytosis by live cell imaging, electron microscopy, and patch clamp electrophysiology. RESULTS Reducing TCF7L2 expression levels by RNAi decreased glucose- but not KCl-induced insulin secretion. The glucose-induced increments in both ATP/ADP ratio and cytosolic free Ca2+ concentration ([Ca2+]i) were increased compared with controls. Overexpression of TCF7L2 exerted minor inhibitory effects on glucose-regulated changes in [Ca2+]i and insulin release. Gene expression profiling in TCF7L2-silenced cells revealed increased levels of mRNA encoding syntaxin 1A but decreased Munc18–1 and ZnT8 mRNA. Whereas the number of morphologically docked vesicles was unchanged by TCF7L2 suppression, secretory granule movement increased and capacitance changes decreased, indicative of defective vesicle fusion. CONCLUSION—TCF7L2 is involved in maintaining expression of β-cell genes regulating secretory granule fusion. Defective insulin exocytosis may thus underlie increased diabetes incidence in carriers of the at-risk TCF7L2 alleles.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3