Deletion of Protein Kinase D1 in Pancreatic β-Cells Impairs Insulin Secretion in High-Fat Diet–Fed Mice

Author:

Bergeron Valérie12,Ghislain Julien1,Vivot Kevin1,Tamarina Natalia3,Philipson Louis H.3,Fielitz Jens456,Poitout Vincent12ORCID

Affiliation:

1. Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l′Université de Montréal, Montréal, Quebec, Canada

2. Department of Medicine, Université de Montréal, Montréal, Quebec, Canada

3. Kovler Diabetes Center, University of Chicago, Chicago, IL

4. Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany

5. DZHK (German Center for Cardiovascular Research), Greifswald, Germany

6. Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany

Abstract

Ββ-Cell adaptation to insulin resistance is necessary to maintain glucose homeostasis in obesity. Failure of this mechanism is a hallmark of type 2 diabetes (T2D). Hence, factors controlling functional β-cell compensation are potentially important targets for the treatment of T2D. Protein kinase D1 (PKD1) integrates diverse signals in the β-cell and plays a critical role in the control of insulin secretion. However, the role of β-cell PKD1 in glucose homeostasis in vivo is essentially unknown. Using β-cell–specific, inducible PKD1 knockout mice (βPKD1KO), we examined the role of β-cell PKD1 under basal conditions and during high-fat feeding. βPKD1KO mice under a chow diet presented no significant difference in glucose tolerance or insulin secretion compared with mice expressing the Cre transgene alone; however, when compared with wild-type mice, both groups developed glucose intolerance. Under a high-fat diet, deletion of PKD1 in β-cells worsened hyperglycemia, hyperinsulinemia, and glucose intolerance. This was accompanied by impaired glucose-induced insulin secretion both in vivo in hyperglycemic clamps and ex vivo in isolated islets from high-fat diet–fed βPKD1KO mice without changes in islet mass. This study demonstrates an essential role for PKD1 in the β-cell adaptive secretory response to high-fat feeding in mice.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Institute of Nutrition, Metabolism and Diabetes

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3