CD28/CD154 Blockade Prevents Autoimmune Diabetes by Inducing Nondeletional Tolerance After Effector T-Cell Inhibition and Regulatory T-Cell Expansion

Author:

Rigby Mark R.123,Trexler Alison M.2,Pearson Thomas C.23,Larsen Christian P.23

Affiliation:

1. Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia

2. Department of Surgery, Emory University School of Medicine, Atlanta, Georgia

3. Children's Healthcare of Atlanta at Egleston, Atlanta, Georgia

Abstract

OBJECTIVE—Blocking T-cell signaling is an effective means to prevent autoimmunity and allograft rejection in many animal models, yet the clinical translation of many of these approaches has not resulted in the success witnessed in experimental systems. Improved understanding of these approaches may assist in developing safe and effective means to treat disorders such as autoimmune diabetes. RESEARCH DESIGN AND METHODS—We studied the effect of anti-CD154 and CTLA4-Ig on diabetes development, and the requirements to induce tolerance in nod.scid mice after transfer of transgenic β-cell reactive BDC2.5.NOD T-cells. RESULTS—Nod.scid recipients of diabetogenic BDC2.5.NOD cells were protected indefinitely from diabetes by a short course of combined costimulation blockade, despite the continued diabetogenic potential of their T-cells. The presence of pathogenic T-cells in the absence of disease indicates peripheral immune tolerance. T-cell maturation occurred in protected recipients, yet costimulation blockade temporarily blunted early T-cell proliferation in draining pancreatic nodes. Tolerance required preexisting regulatory T-cells (Tregs), and protected recipients had greater numbers of Tregs than diabetic recipients. Diabetes protection was successful in the presence of homeostatic expansion and high T-cell precursor frequency, both obstacles to tolerance induction in other models of antigen-specific immunity. CONCLUSIONS—Immunotherapies that selectively suppress effector T-cells while permitting the development of natural regulatory mechanisms may have a unique role in establishing targeted long-standing immune protection and peripheral tolerance. Understanding the mechanism of these approaches may assist in the design and use of therapies for human conditions, such as type 1 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3