Central Nervous System Neuropeptide Y Signaling Modulates VLDL Triglyceride Secretion

Author:

Stafford John M.1,Yu Fang2,Printz Richard12,Hasty Alyssa H.2,Swift Larry L.3,Niswender Kevin D.412

Affiliation:

1. Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee

2. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee

3. Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee

4. Tennessee Valley Healthcare System, Nashville, Tennessee

Abstract

OBJECTIVE—Elevated triglyceride (TG) is the major plasma lipid abnormality in obese and diabetic patients and contributes to cardiovascular morbidity in these disorders. We sought to identify novel mechanisms leading to hypertriglyceridemia. Resistance to negative feedback signals from adipose tissue in key central nervous system (CNS) energy homeostatic circuits contributes to the development of obesity. Because triglycerides both represent the largest energy depot in the body and are elevated in both the plasma and adipose in obesity and diabetes, we hypothesized that the same neural circuits that regulate energy balance also regulate the secretion of TGs into plasma. RESEARCH DESIGN AND METHODS—In normal fasting rats, the TG secretion rate was estimated by serial blood sampling after intravascular tyloxapol pretreatment. Neuropeptide Y (NPY) signaling in the CNS was modulated by intracerebroventricular injection of NPY, receptor antagonist, and receptor agonist. RESULTS—A single intracerebroventricular injection of NPY increased TG secretion by 2.5-fold in the absence of food intake, and this was determined to be VLDL by fast performance liquid chromatography (FPLC). This effect was recapitulated by activating NPY signaling in downstream neurons with an NPY-Y5 receptor agonist. An NPY-Y1 receptor antagonist decreased the elevated TGs in the form of VLDL secretion rate by 50% compared with vehicle. Increased TG secretion was due to increased secretion of VLDL particles, rather than secretion of larger particles, because apolipoprotein B100 was elevated in FPLC fractions corresponding to VLDL. CONCLUSIONS—We find that a key neuropeptide system involved in energy homeostasis in the CNS exerts control over VLDL-TG secretion into the bloodstream.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3