VEGF-A: A Novel Mechanistic Link Between CYP2C-Derived EETs and Nox4 in Diabetic Kidney Disease

Author:

Njeim Rachel12,Braych Kawthar1,Ghadieh Hilda E.123,Azar Nadim S.12,Azar William S.12,Dia Batoul12,Leone Angelo4,Cappello Francesco4,Kfoury Hala5,Harb Frederic3,Jurjus Abdo R.1,Eid Assaad A.12ORCID,Ziyadeh Fuad N.6

Affiliation:

1. 1Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon

2. 2AUB Diabetes, American University of Beirut, Beirut, Lebanon

3. 3Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Koura, Lebanon

4. 4Department of Biomedicine, Neurosciences and Advanced Diagnosis, School of Medicine, University of Palermo, Palermo, Italy

5. 5Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon

6. 6Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon

Abstract

Diabetes is associated with decreased epoxyeicosatrienoic acid (EET) bioavailability and increased levels of glomerular vascular endothelial growth factor A (VEGF-A) expression. We examined whether a soluble epoxide hydrolase inhibitor protects against pathologic changes in diabetic kidney disease and whether the inhibition of the VEGF-A signaling pathway attenuates diabetes-induced glomerular injury. We also aimed to delineate the cross talk between cytochrome P450 2C (CYP2C)–derived EETs and VEGF-A. Streptozotocin-induced type 1 diabetic (T1D) rats were treated with 25 mg/L of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) in drinking water for 6 weeks. In parallel experiments, T1D rats were treated with either SU5416 or humanized monoclonal anti–VEGF-A neutralizing antibody for 8 weeks. Following treatment, the rats were euthanized, and kidney cortices were isolated for further analysis. Treatment with AUDA attenuated the diabetes-induced decline in kidney function. Furthermore, treatment with AUDA decreased diabetes-associated oxidative stress and NADPH oxidase activity. Interestingly, the downregulation of CYP2C11-derived EET formation is found to be correlated with the activation of the VEGF-A signaling pathway. In fact, inhibiting VEGF-A using anti-VEGF or SU5416 markedly attenuated diabetes-induced glomerular injury through the inhibition of Nox4-induced reactive oxygen species production. These findings were replicated in vitro in rat and human podocytes cultured in a diabetic milieu. Taken together, our results indicate that hyperglycemia-induced glomerular injury is mediated by the downregulation of CYP2C11-derived EET formation, followed by the activation of VEGF-A signaling and upregulation of Nox4. To our knowledge, this is the first study to highlight VEGF-A as a mechanistic link between CYP2C11-derived EET production and Nox4. Article Highlights Diabetes is associated with an alteration in cytochrome P450 2C11 (CYP2C11)–derived epoxyeicosatrienoic acid (EET) bioavailability. Decreased CYP2C11-derived EET bioavailability mediates hyperglycemia-induced glomerular injury. Decreased CYP2C11-derived EET bioavailability is associated with increased reactive oxygen species production, NADPH oxidase activity, and Nox4 expression in type 1 diabetes. Decreased CYP2C11-derived EET formation mediates hyperglycemia-induced glomerular injury through the activation of the vascular endothelial growth factor A (VEGF-A) signaling pathway. Inhibiting VEGF signaling using anti-VEGF or SU5416 attenuates type 1 diabetes–induced glomerular injury by decreasing NADPH oxidase activity and NOX4 expression.

Funder

Predoctoral scholarship from the American University of Beirut

A Medical Practice Plan (MPP) regular research grant from the American University of Beirut

National Council for Scientific Research

Qatar National Research Foundation

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3