Motifs of Three HLA-DQ Amino Acid Residues (α44, β57, β135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children

Author:

Zhao Lue Ping1ORCID,Papadopoulos George K.2,Kwok William W.3,Moustakas Antonis K.4,Bondinas George P.2,Larsson Helena Elding5,Ludvigsson Johnny6,Marcus Claude7,Samuelsson Ulf6,Wang Ruihan8,Pyo Chul-Woo8,Nelson Wyatt C.8,Geraghty Daniel E.8,Lernmark Åke5

Affiliation:

1. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA

2. Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece

3. Benaroya Research Institute at Virginia Mason, Seattle, WA

4. Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece

5. Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden

6. Crown Princess Victoria Children’s Hospital, Region Östergötland, and Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

7. Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden

8. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA

Abstract

HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next-generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1- to 18 year-old patients (n = 962) and control subjects (n = 636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically organized haplotype (HOH) association analysis allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (odds ratio [OR] 3.29, P = 2.38 * 10−85) and β57A (OR 3.44, P = 3.80 * 10−84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, P = 1.96 * 10−20). The motif “QAD” of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, P = 3.80 * 10−84), and the corresponding motif “CAD” captured the risk association of DQ2.5 (OR 2.10, P = 1.96 * 10−20). Two risk associations were related to GAD65 autoantibody (GADA) and IA-2 autoantibody (IA-2A) but in opposite directions. CAD was positively associated with GADA (OR 1.56, P = 6.35 * 10−8) but negatively with IA-2A (OR 0.59, P = 6.55 * 10−11). QAD was negatively associated with GADA (OR 0.88; P = 3.70 * 10−3) but positively with IA-2A (OR 1.64; P = 2.40 * 10−14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential T-cell receptor contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AAs (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

European Foundation for the Study of Diabetes

Swedish Research Council

Skåne County Council for Research and Development

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3