GLP-2 Regulation of Dietary Fat Absorption and Intestinal Chylomicron Production via Neuronal Nitric Oxide Synthase (nNOS) Signaling

Author:

Grande Elisabeth M.12ORCID,Raka Fitore12,Hoffman Simon13,Adeli Khosrow123ORCID

Affiliation:

1. 1Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada

2. 2Department of Physiology, University of Toronto, Toronto, Ontario, Canada

3. 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

Abstract

Postprandial dyslipidemia is a metabolic condition commonly associated with insulin-resistant states, such as obesity and type 2 diabetes. It is characterized by the overproduction of intestinal chylomicron particles and excess atherogenic chylomicron remnants in circulation. We have previously shown that glucagon-like peptide 2 (GLP-2) augments dietary fat uptake and chylomicron production in insulin-resistant states; however, the underlying mechanisms remain unclear. Previous studies have implicated nitric oxide (NO) in the absorptive actions of GLP-2. In this study, we report a novel role for neuronal NO synthase (nNOS)–mediated NO generation in lipid uptake and chylomicron formation based on studies in C57BL/6J mice, nNOS−/− mice, and Syrian golden hamsters after intraduodenal and oral fat administration. GLP-2 treatment in wild-type (WT) mice significantly increased postprandial lipid accumulation and circulating apolipoprotein B48 protein levels, while these effects were abolished in nNOS−/− mice. nNOS inhibition in Syrian golden hamsters and protein kinase G (PKG) inhibition in WT mice also abrogated the effect of GLP-2 on postprandial lipid accumulation. These studies demonstrate a novel mechanism in which nNOS-generated NO is crucial for GLP-2–mediated lipid absorption and chylomicron production in both mouse and hamster models. Overall, our data implicate an nNOS-PKG–mediated pathway in GLP-2–mediated stimulation of dietary fat absorption and intestinal chylomicron production.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3