C16:0 Sulfatide Inhibits Insulin Secretion in Rat β-Cells by Reducing the Sensitivity of KATP Channels to ATP Inhibition

Author:

Buschard Karsten1,Blomqvist Maria2,Månsson Jan-Eric2,Fredman Pam2,Juhl Kirstine3,Gromada Jesper4

Affiliation:

1. Bartholin Instituttet, Rigshospitalet, Copenhagen, Denmark

2. Institute of Clinical Neuroscience, The Sahlgrenska Academy at Göteborg University, Mölndal Hospital, Mölndal, Sweden

3. Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, Colorado

4. Lilly Research Laboratories, Hamburg, Germany

Abstract

Sulfatide (3′-sulfo-β-galactosyl ceramide) is a glycosphingolipid present in mammalians in various fatty acid isoforms of which the saturated 16 carbon-atom length (C16:0) is more abundant in pancreatic islets than in neural tissue, where long-chain sulfatide isoforms dominate. We previously reported that sulfatide isolated from pig brain inhibits glucose-induced insulin secretion by activation of ATP-sensitive K+ channels (KATP channels). Here, we show that C16:0 sulfatide is the active isoform. It inhibits glucose-stimulated insulin secretion by reducing the sensitivity of the KATP channels to ATP. (The half-maximal inhibitory concentration is 10.3 and 36.7 μmol/l in the absence and presence of C16:0 sulfatide, respectively.) C16:0 sulfatide increased whole-cell KATP currents at intermediate glucose levels and reduced the ability of glucose to induce membrane depolarization, reduced electrical activity, and increased the cytoplasmic free Ca2+ concentration. Recordings of cell capacitance revealed that C16:0 sulfatide increased Ca2+-induced exocytosis by 215%. This correlated with a stimulation of insulin secretion by C16:0 sulfatide in intact rat islets exposed to diazoxide and high K+. C24:0 sulfatide or the sulfatide precursor, β-galactosyl ceramide, did not affect any of the measured parameters. C16:0 sulfatide did not modulate glucagon secretion from intact rat islets. In βTC3 cells, sulfatide was expressed (mean [±SD] 0.30 ± 0.04 pmol/μg protein), and C16:0 sulfatide was found to be the dominant isoform. No expression of sulfatide was detected in αTC1-9 cells. We conclude that a major mechanism by which the predominant sulfatide isoform in β-cells, C16:0 sulfatide, inhibits glucose-induced insulin secretion is by reducing the KATP channel sensitivity to the ATP block.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3