Single-Cell Transcriptomics Reveals Novel Role of Microglia in Fibrovascular Membrane of Proliferative Diabetic Retinopathy

Author:

Hu Zizhong,Mao Xiying,Chen Mingkang,Wu Xinjing,Zhu Tianye,Liu Yu,Zhang Zhengyu,Fan Wen,Xie Ping,Yuan SongtaoORCID,Liu QinghuaiORCID

Abstract

Vitreous fibrovascular membranes (FVMs), the hallmark of proliferative diabetic retinopathy (PDR), cause retinal hemorrhage, detachment, and eventually blindness. However, little is known about the pathophysiology of FVM. In this study, we used single-cell RNA sequencing on surgically harvested PDR-FVMs and generated a comprehensive cell atlas of FVM. Eight cellular compositions were identified, with microglia as the major cell population. We identified a GPNMB+ subpopulation of microglia, which presented both profibrotic and fibrogenic properties. Pseudotime analysis further revealed the profibrotic microglia was uniquely differentiated from retina-resident microglia and expanded in the PDR setting. Ligand-receptor interactions between the profibrotic microglia and cytokines upregulated in PDR vitreous implicated the involvement of several pathways, including CCR5, IFNGR1, and CD44 signaling, in the microglial activation within the PDR microenvironment. Collectively, our description of the novel microglia phenotypes in PDR-FVM may offer new insight into the cellular and molecular mechanism underlying the pathogenesis of DR, as well as potential signaling pathways amenable to disease-specific intervention.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3