Effects of Calcium Antagonists on Insulin-Mediated Glucose Metabolism in Skeletal Muscle

Author:

Foot Elizabeth A1,Leighton Brendan1

Affiliation:

1. Department of Biochemistry, University of Oxford Oxford, United Kingdom

Abstract

The effect of three calcium antagonists (verapamil, diltiazem, and nifedipine) on insulin effects was investigated in isolated rat soleus muscles. Soleus muscles were incubated in the presence of insulin (100 μU/ml), a concentration that stimulates the rates of lactate formation and glycogen synthesis half-maximally and with and without a calcium antagonist. A decrease (48%; P < 0.001) was noted in the insulin-mediated rate of glycogen synthesis by verapamil at 100 μM; no effect was observed at lower concentrations of verapamil. Diltiazem decreased the insulin-mediated rates of glycogen synthesis by 36 (P < 0.001), 64 (P < 0.001), and 73% (P < 0.001) at 1,10, and 100 μM, respectively. Nifedipine decreased the insulin-mediated rates of glycogen synthesis by 37% at 0.1 μM (P < 0.001), 36% at 1 μM (P < 0.001), 21% at 10 μM (P < 0.05), and 72% at 100 μM (P < 0.001). Verapamil at 100 μM decreased lactate formation by 48% (P < 0.001). However, diltiazem increased the rate of lactate formation by 22 (P < 0.01), 43 (P < 0.001), and 61% (P < 0.001) at 1,10, and 100 μM, respectively. In contrast, nifedipine increased the insulin-mediated rate of lactate formation by 45% only at 100 μM (P < 0.01). The increased rate of lactate formation was probably caused by an increased rate of glycogenolysis, because high concentrations of all the calcium antagonists significantly decreased muscle glycogen content. The insulin-stimulated rate of 3-O-methyl-D-glucose transport or cAMP content was not affected by diltiazem at 1 or 10 μM. The results suggest that the calcium antagonists work by a mechanism, possibly by activating a calcium channel or an extracellular receptor, to influence markedly insulin-mediated intracellular glucose metabolism in skeletal muscle.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3