Biological Actions of Insulin Are Differentially Regulated by Glucose and Insulin in Primary Cultured Adipocytes: Chronic Ability to Increase Glycogen Synthase Activity

Author:

Lima Fabio B1,Bao Shichun2,Garvey W Timothy2

Affiliation:

1. Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo, Brazil

2. Section of Endocrinology, Indianapolis Veterans Administration Medical Center, and the Departments of Medicine and Physiology and Biophysics, Indiana University School of Medicine Indianapolis, Indiana

Abstract

We have shown previously that prolonged exposure to insulin and glucose impairs the insulin-responsive glucose transport system in primary cultured adipocytes. To assess the ability of insulin and glucose to regulate other cellular insulin actions, epididymal rat adipocytes were cultured in media containing 0–15 mM D-glucose and with or without insulin (50 ng/ml). After 24 h, cells were washed and basal and maximally insulin-stimulated rates of 2-deoxy-D-glucose uptake, L-leucine incorporation into protein, glucose oxidation to CO2, glucose incorporation into lipids, and glycogen synthase activity were measured. The results confirmed that glucose potentiates insulin's chronic ability to decrease basal and maximal glucose transport rates by ∼ 50% at 5 mM glucose and by ∼70% at 15 mM glucose compared with control cells. However, neither glucose nor insulin, alone or in combination, affected rates of leucine incorporation into protein. In addition, basal and maximal rates of glucose oxidation and of glucose incorporation into lipids were not regulated by glucose, and maximal responses declined ∼50% over 24 h only when insulin was not present during preincubation (i.e., chronic insulin exposure was necessary to maintain full maximal responses). Glycogen synthase activity was measured in a cell-free system (0.5 mM UDP-glucose, with 10 or 0.01 mM glucose-6-phosphate) after exposing intact cells to glucose and insulin. Both short-term (1 h) and long-term (24 h) exposure to glucose alone led a dose-dependent increase in I-form and D-form glycogen synthase activity. Chronic exposure to insulin also increased total glycogen synthase activity (I- plus D-form) but did not affect absolute rates of maximally stimulated I-form activity. Glucose (but not insulin) increased the cellular content of immunoreactive glycogen synthase by 70% after 1 h. These results show that 1) chronic exposure to glucose and insulin impairs insulin responsiveness of the glucose transport system but does not affect rates of amino acid incorporation into protein; 2) the chronic presence of insulin is necessary for the maintenance of normal maximally stimulated rates of glucose oxidation and of glucose incorporation into lipids in cultured cells; and 3) glucose increases both D-form and I-form glycogen synthase activity, in part by increasing the amount of synthase protein, whereas chronic insulin exposure increases total glycogen synthase activity without altering maximal absolute rates of I-form activity. In conclusion, glucose and insulin differentially regulate the multiple biological actions of insulin in cultured adipocytes, indicating that underlying mechanisms involve the hormone effector systems or components of signal transduction unique to individual action pathways. In NIDDM, defects in glucose transport but not other insulin actions may be acquired as a result of high circulating blood glucose and insulin concentrations.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3