Bimodal Effect on Pancreatic β-Cells of Secretory Products From Normal or Insulin-Resistant Human Skeletal Muscle

Author:

Bouzakri Karim1,Plomgaard Peter2,Berney Thierry3,Donath Marc Y.4,Pedersen Bente Karlund2,Halban Philippe A.1

Affiliation:

1. Department of Genetic Medicine and Development, University Medical Center, University of Geneva, Geneva, Switzerland

2. Department of Infectious Diseases and the Copenhagen Muscle Research Centre, The Centre of Inflammation and Metabolism, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

3. Division of Surgical Research, Department of Surgery, Cell Isolation and Transplantation Center, University Hospital, Geneva, Switzerland

4. Division of Endocrinology, Diabetology and Metabolism, University Hospital, Basel, Switzerland

Abstract

OBJECTIVE Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells. RESEARCH DESIGN AND METHODS Human skeletal muscle cells were cultured for up to 24 h with tumor necrosis factor (TNF)-α to induce insulin resistance, and mRNA expression for cytokines was analyzed and compared with controls (without TNF-α). Conditioned media were collected and candidate cytokines were measured by antibody array. Human and rat primary β-cells were used to explore the impact of exposure to conditioned media for 24 h on apoptosis, proliferation, short-term insulin secretion, and key signaling protein phosphorylation and expression. RESULTS Human myotubes express and release a different panel of myokines depending on their insulin sensitivity, with each panel exerting differential effects on β-cells. Conditioned medium from control myotubes increased proliferation and glucose-stimulated insulin secretion (GSIS) from primary β-cells, whereas conditioned medium from TNF-α–treated insulin-resistant myotubes (TMs) exerted detrimental effects that were either independent (increased apoptosis and decreased proliferation) or dependent on the presence of TNF-α in TM (blunted GSIS). Knockdown of β-cell mitogen-activated protein 4 kinase 4 prevented these effects. Glucagon-like peptide 1 protected β-cells against decreased proliferation and apoptosis evoked by TMs, while interleukin-1 receptor antagonist only prevented the latter. CONCLUSIONS Taken together, these data suggest a possible new route of communication between skeletal muscle and β-cells that is modulated by insulin resistance and could contribute to normal β-cell functional mass in healthy subjects, as well as the decrease seen in type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3