Specific Control of Pancreatic Endocrine β- and δ-Cell Mass by Class IIa Histone Deacetylases HDAC4, HDAC5, and HDAC9

Author:

Lenoir Olivia1,Flosseau Kathleen1,Ma Feng Xia1,Blondeau Bertrand2,Mai Antonello3,Bassel-Duby Rhonda4,Ravassard Philippe5,Olson Eric N.4,Haumaitre Cécile1,Scharfmann Raphaël1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France

2. INSERM Unité Mixte de Recherche (UMR)-S 872, Cordeliers Research Center, Paris, France

3. Pasteur Institute-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy

4. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas

5. Institute of Brain and Spinal Cord Research Center, Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM UMR-S 975, Pierre and Marie Curie University, Pitié Salpêtrière Hospital, Paris, France

Abstract

OBJECTIVE Class IIa histone deacetylases (HDACs) belong to a large family of enzymes involved in protein deacetylation and play a role in regulating gene expression and cell differentiation. Previously, we showed that HDAC inhibitors modify the timing and determination of pancreatic cell fate. The aim of this study was to determine the role of class IIa HDACs in pancreas development. RESEARCH DESIGN AND METHODS We took a genetic approach and analyzed the pancreatic phenotype of mice lacking HDAC4, -5, and -9. We also developed a novel method of lentiviral infection of pancreatic explants and performed gain-of-function experiments. RESULTS We show that class IIa HDAC4, -5, and -9 have an unexpected restricted expression in the endocrine β- and δ-cells of the pancreas. Analyses of the pancreas of class IIa HDAC mutant mice revealed an increased pool of insulin-producing β-cells in Hdac5−/− and Hdac9−/− mice and an increased pool of somatostatin-producing δ-cells in Hdac4−/− and Hdac5−/− mice. Conversely, HDAC4 and HDAC5 overexpression showed a decreased pool of insulin-producing β-cells and somatostatin-producing δ-cells. Finally, treatment of pancreatic explants with the selective class IIa HDAC inhibitor MC1568 enhances expression of Pax4, a key factor required for proper β-and δ-cell differentiation and amplifies endocrine β- and δ-cells. CONCLUSIONS We conclude that HDAC4, -5, and -9 are key regulators to control the pancreatic β/δ-cell lineage. These results highlight the epigenetic mechanisms underlying the regulation of endocrine cell development and suggest new strategies for β-cell differentiation-based therapies.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3