Protective Renalase Deficiency in β-Cells Shapes Immune Metabolism and Function in Autoimmune Diabetes

Author:

Bode Kevin12,MacDonald Tara12,Stewart Taylor23,Mendez Bryhan1,Cai Erica P.3,Morrow Noelle3,Lee Yu-Chi3,Yi Peng234ORCID,Kissler Stephan124ORCID

Affiliation:

1. 1Section for Immunobiology, Joslin Diabetes Center, Boston, MA

2. 2Department of Medicine, Harvard Medical School, Boston, MA

3. 3Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA

4. 4Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA

Abstract

Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells that produce insulin. The latest advances in stem cell (SC) β-cell differentiation methods have made a cell replacement therapy for T1D feasible. However, recurring autoimmunity would rapidly destroy transplanted SC β-cells. A promising strategy to overcome immune rejection is to genetically engineer SC β-cells. We previously identified Renalase (Rnls) as a novel target for β-cell protection. Here we show that Rnls deletion endows β-cells with the capacity to modulate the metabolism and function of immune cells within the local graft microenvironment. We used flow cytometry and single-cell RNA sequencing to characterize β-cell graft-infiltrating immune cells in a mouse model for T1D. Loss of Rnls within transplanted β-cells affected both the composition and the transcriptional profile of infiltrating immune cells in favor of an anti-inflammatory profile with decreased antigen-presenting capacity. We propose that changes in β-cell metabolism mediate local immune regulation and that this feature could be exploited for therapeutic goals. Article Highlights Protective Renalase (Rnls) deficiency impacts β-cell metabolism. Rnls-deficient β-cell grafts do not exclude immune infiltration. Rnls deficiency in transplanted β-cells broadly modifies local immune function. Immune cell in Rnls mutant β-cell grafts adopt a noninflammatory phenotype.

Funder

National Institutes of Health

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3