Affiliation:
1. Second Department of Internal Medicine, Kobe University School of Medicine Kobe, Japan
Abstract
We isolated the plasma membrane from rat skeletal muscle without using drastic procedures such as extraction by salts or other agents. As a result of the purity of our preparations, evaluated by enzymatic markers, lipid composition, 125l-insulin specific binding, and morphologic examinations, we were able to use the plasma membrane to study insulin degradation.
Isolated plasma membranes were capable of degrading insulin, but 95% of total degrading activity was found in the cytosol fraction. The membranes proteolytically degraded the hormone with a high degree of specificity and a pH optimum of 7.0. The extent of degradation depended on time, temperature, and protein concentration. The apparent Km for insulin was 1.7 × 10−7 M. N-ethylmaleimide (NEM) and p-chloromercuribenzoate (PCMB) markedly inhibited insulin degradation by membranes, whereas glutathione (GSH) and dithíothreitol (DTT) were stimulatory. These characteristics of insulin-degrading activity in the plasma membrane (membrane-IDE) were similar to those of the partially purified insulin-degrading enzyme from the cytosol fraction (cytosol-IDE).
To clarify the biologic significance of IDE, we examined the cytosol- and membrane-IDE activities under various conditions in rats grouped as follows: fed, fasted for 1 day, fasted for 3 days, refed, refed + actinomycin D, diabetic, and hyperinsulinemic (insulinoma). A positive correlation with a high coefficient (r = 0.674, P < 0.001) was demonstrated between cytosol-IDE and the plasma insulin concentration but not between membrane-IDE and insulin levels. While actinomycin D had no effect on membrane-IDE levels, it abolished the insulin-mediated rise in cytosol-IDE activity, suggesting that the latter was dependent on RNA synthesis.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献