In Vitro Studies of the Substrates for Energy Production and the Effects of Insulin on Glucose Utilization in the Neural Components of Peripheral Nerve

Author:

Greene Douglas A1,Winegrad Albert I1

Affiliation:

1. George S. Cox Medical Research Institute, Department of Medicine. University of Pennsylvania, School of Medicine Philadephia, Pennsylvania 19104

Abstract

An “endoneurial” preparation from a rabbit tibial nerve fascicle was used to study the ability of peripheral nerve axons and Schwann cells to derive their composite energy requirements from glucose, D-β-hydroxybutyrate, or albumin-bound palmitate, and the effects of insulin in vitro on their composite glucose utilization. Samples incubated with 5 mM glucose for 2 h maintained a stable O2 uptake and P-creatine and ATP concentrations, and they exhibited a slight increase in P-creatine/creatine ratio (the electron microscopic appearance of the preparation was previously shown to be unaltered under these conditions). The rate of glucose oxidation required to account for the O2 uptake accounted for 61% of the glucose uptake. In samples incubated without substrate for 2 h, a marked fall in tissue glucose was associated with a 50% decrease in O2 uptake and with decreases in P-creatine, ATP, and in the P-creatine/creatine ratio. In medium lacking glucose but containing 5 mM DL-β-hydroxybutyrate, a stable rate of D-β-hydroxybutyrate uptake was observed, and acetoacetate production accounted for only a small fraction; significant decreases in O2 uptake or ATP were prevented, and, although P-creatine and the P-creatine/creatine ratio fell, they remained significantly higher than after incubation without substrate. An efficient blood-nerve barrier to albumin is known to exist. Medium containing albumin-bound palmitate with molar ratios of palmitate/albumin of 1 or 2 (highest FFA concentration, 1.32 meq/L) failed to prevent decreases in P-creatine, ATP, and in the P-creatine/creatine ratio during incubations without glucose; the associated O2 uptakes suggested that the tissue is susceptible to respiratory uncoupling and depression on exposure to albumin-bound palmitate as compared with non-neural tissue. Insulin (100 or 1000 μU/ml) had no detectable effects on glucose utilization in the endoneurial preparation during 2-h incubations with 5 mM glucose or (U-14C) glucose. In contrast, in epineurial tissue from rabbit sciatic nerve, insulin (100 μU/ml) increased (U-14C) glucose incorporation into CO2 and total lipid. The neural components of peripheral nerve are probably dependent on glucose as their major substrate for energy production and respiration under most physiologic conditions in which elevated plasma ketone body concentrations are absent; their composite glucose utilization is not subject to acute, direct regulation by insulin in concentrations that might reasonably be derived from plasma insulin of pancreatic origin.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3