Connectivity Mapping Identifies BI-2536 as a Potential Drug to Treat Diabetic Kidney Disease

Author:

Zhang Lu12,Wang Zichen3,Liu Ruijie1,Li Zhengzhe1,Lin Jennifer3,Wojciechowicz Megan L.3,Huang Jiyi2,Lee Kyung1ORCID,Ma’ayan Avi3,He John Cijiang14ORCID

Affiliation:

1. Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY

2. Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China

3. Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY

4. Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, NY

Abstract

Diabetic kidney disease (DKD) remains the most common cause of kidney failure, and the treatment options are insufficient. Here, we used a connectivity mapping approach to first collect 15 gene expression signatures from 11 DKD-related published independent studies. Then, by querying the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 data set, we identified drugs and other bioactive small molecules that are predicted to reverse these gene signatures in the diabetic kidney. Among the top consensus candidates, we selected a PLK1 inhibitor (BI-2536) for further experimental validation. We found that PLK1 expression was increased in the glomeruli of both human and mouse diabetic kidneys and localized largely in mesangial cells. We also found that BI-2536 inhibited mesangial cell proliferation and extracellular matrix in vitro and ameliorated proteinuria and kidney injury in DKD mice. Further pathway analysis of the genes predicted to be reversed by the PLK1 inhibitor was of members of the TNF-α/NF-κB, JAK/STAT, and TGF-β/Smad3 pathways. In vitro, either BI-2536 treatment or knockdown of PLK1 dampened the NF-κB and Smad3 signal transduction and transcriptional activation. Together, these results suggest that the PLK1 inhibitor BI-2536 should be further investigated as a novel therapy for DKD.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Veterans Affairs

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3