Benfotiamine Prevents Macro- and Microvascular Endothelial Dysfunction and Oxidative Stress Following a Meal Rich in Advanced Glycation End Products in Individuals With Type 2 Diabetes

Author:

Stirban Alin1,Negrean Monica1,Stratmann Bernd1,Gawlowski Thomas1,Horstmann Tina1,Götting Christian1,Kleesiek Knut1,Mueller-Roesel Michaela1,Koschinsky Theodor2,Uribarri Jaime3,Vlassara Helen3,Tschoepe Diethelm1

Affiliation:

1. Heart and Diabetes Center NRW, Bad Oeynhausen, Ruhr-University, Bochum, Germany

2. German Diabetes Center, Heinrich-Heine University, Duesseldorf, Germany

3. Division of Diabetes and Aging, Mount Sinai School of Medicine, New York, New York

Abstract

OBJECTIVE— Diabetes is characterized by marked postprandial endothelial dysfunction induced by hyperglycemia, hypertriglyceridemia, advanced glycation end products (AGEs), and dicarbonyls (e.g., methylglyoxal [MG]). In vitro hyperglycemia-induced MG formation and endothelial dysfunction could be blocked by benfotiamine, but in vivo effects of benfotiamine on postprandial endothelial dysfunction and MG synthesis have not been investigated in humans until now. RESEARCH DESIGN AND METHODS— Thirteen people with type 2 diabetes were given a heat-processed test meal with a high AGE content (HAGE; 15.100 AGE kU, 580 kcal, 54 g protein, 17 g lipids, and 48 g carbohydrates) before and after a 3-day therapy with benfotiamine (1,050 mg/day). Macrovascular flow-mediated dilatation (FMD) and microvascular reactive hyperemia, along with serum markers of endothelial disfunction (E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), oxidative stress, AGE, and MG were measured during both test meal days after an overnight fast and then at 2, 4, and 6 h postprandially. RESULTS— The HAGE induced a maximum reactive hyperemia decrease of −60.0% after 2 h and a maximum FMD impairment of −35.1% after 4 h, without affecting endothelium-independent vasodilatation. The effects of HAGE on both FMD and reactive hyperemia were completely prevented by benfotiamine. Serum markers of endothelial dysfunction and oxidative stress, as well as AGE, increased after HAGE. These effects were significantly reduced by benfotiamine. CONCLUSIONS— Our study confirms micro- and macrovascular endothelial dysfunction accompanied by increased oxidative stress following a real-life, heat-processed, AGE-rich meal in individuals with type 2 diabetes and suggests benfotiamine as a potential treatment.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 226 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3