Neuritin Mediates Nerve Growth Factor–Induced Axonal Regeneration and Is Deficient in Experimental Diabetic Neuropathy

Author:

Karamoysoyli Eugenia1,Burnand Rebecca C.1,Tomlinson David R.1,Gardiner Natalie J.1

Affiliation:

1. From the Faculty of Life Sciences, University of Manchester, Manchester, U.K

Abstract

OBJECTIVE—Axonal regeneration is defective in both experimental and clinical diabetic neuropathy, contributing to loss of axonal extremities and neuronal dysfunction. The mechanisms behind this failure are not fully understood; however, a deficit in neurotrophic support and signaling has been implicated. RESEARCH DESIGN AND METHODS—We investigated the expression of neuritin (also known as candidate plasticity gene 15, cpg15) in the sensory nervous system of control rats and rats with streptozotocin (STZ)-induced diabetes using microarray PCR, Western blotting, and immunocytochemical analysis. The functional role of neuritin in sensory neurons in vitro was assessed using silencing RNA. RESULTS—Neuritin was expressed by a population of small-diameter neurons in the dorsal root ganglia (DRG) and was anterogradely and retrogradely transported along the sciatic nerve in vivo. Nerve growth factor (NGF) treatment induced an increase in the transcription and translation of neuritin in sensory neurons in vitro. This increase was both time and dose dependent and occurred via mitogen-activated protein kinase or phosphatidylinositol-3 kinase activation. Inhibition of neuritin using silencing RNA abolished NGF-mediated neurite outgrowth, demonstrating the crucial role played by neuritin in mediating regeneration. Neuritin levels were reduced in both the DRG and sciatic nerve of rats with 12 weeks of STZ-induced diabetes, and these deficits were reversed in vivo by treatment with NGF. CONCLUSIONS—Manipulation of neuritin levels in diabetes may therefore provide a potential target for therapeutic intervention in the management of neuropathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3