Apolipoprotein E4 Exaggerates Diabetic Dyslipidemia and Atherosclerosis in Mice Lacking the LDL Receptor

Author:

Johnson Lance A.1,Arbones-Mainar Jose M.1,Fox Raymond G.1,Pendse Avani A.1,Altenburg Michael K.1,Kim Hyung-Suk1,Maeda Nobuyo1

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Abstract

OBJECTIVE We investigated the differential roles of apolipoprotein E (apoE) isoforms in modulating diabetic dyslipidemia—a potential cause of the increased cardiovascular disease risk of patients with diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced using streptozotocin (STZ) in human apoE3 (E3) or human apoE4 (E4) mice deficient in the LDL receptor (LDLR−/−). RESULTS Diabetic E3LDLR−/− and E4LDLR−/− mice have indistinguishable levels of plasma glucose and insulin. Despite this, diabetes increased VLDL triglycerides and LDL cholesterol in E4LDLR−/− mice twice as much as in E3LDLR−/− mice. Diabetic E4LDLR−/− mice had similar lipoprotein fractional catabolic rates compared with diabetic E3LDLR−/− mice but had larger hepatic fat stores and increased VLDL secretion. Diabetic E4LDLR−/− mice demonstrated a decreased reliance on lipid as an energy source based on indirect calorimetry. Lower phosphorylated acetyl-CoA carboxylase content and higher gene expression of fatty acid synthase in the liver indicated reduced fatty acid oxidation and increased fatty acid synthesis. E4LDLR−/− primary hepatocytes cultured in high glucose accumulated more intracellular lipid than E3LDLR−/− hepatocytes concomitant with a 60% reduction in fatty acid oxidation. Finally, the exaggerated dyslipidemia in diabetic E4LDLR−/− mice was accompanied by a dramatic increase in atherosclerosis. CONCLUSIONS ApoE4 causes severe dyslipidemia and atherosclerosis independent of its interaction with LDLR in a model of STZ-induced diabetes. ApoE4-expressing livers have reduced fatty acid oxidation, which contributes to the accumulation of tissue and plasma lipids.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3