An Early Islet Transcriptional Signature Is Associated With Local Inflammation in Autoimmune Diabetes

Author:

Derr Alan G.1,Arowosegbe Adediwura12,Satish Basanthi2,Redick Sambra D.13,Qaisar Natasha12,Guo Zhiru12,Vanderleeden Emma12,Trombly Melanie I.2,Baer Christina E.4,Harlan David M.12ORCID,Greiner Dale L.13,Garber Manuel35,Wang Jennifer P.12ORCID

Affiliation:

1. 1Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA

2. 2Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA

3. 3Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA

4. 4Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA

5. 5Program in Bioinformatics and Integrative Medicine, University of Massachusetts Chan Medical School, Worcester, MA

Abstract

Identifying the early islet cellular processes of autoimmune type 1 diabetes (T1D) in humans is challenging given the absence of symptoms during this period and the inaccessibility of the pancreas for sampling. In this article, we study temporal events in pancreatic islets in LEW.1WR1 rats, in which autoimmune diabetes can be induced with virus infection, by performing transcriptional analysis of islets harvested during the prediabetic period. Single-cell RNA-sequencing and differential expression analyses of islets from prediabetic rats reveal subsets of β- and α-cells under stress as evidenced by heightened expression, over time, of a transcriptional signature characterized by interferon-stimulated genes, chemokines including Cxcl10, major histocompatibility class I, and genes for the ubiquitin-proteasome system. Mononuclear phagocytes show increased expression of inflammatory markers. RNA-in situ hybridization of rat pancreatic tissue defines the spatial distribution of Cxcl10+ β- and α-cells and their association with CD8+ T cell infiltration, a hallmark of insulitis and islet destruction. Our studies define early islet transcriptional events during immune cell recruitment to islets and reveal spatial associations between stressed β- and α-cells and immune cells. Insights into such early processes can assist in the development of therapeutic and prevention strategies for T1D.

Funder

Massachusetts Life Sciences Center

National Institute of Allergy and Infectious Diseases

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3