Human β-Cell Killing by Autoreactive Preproinsulin-Specific CD8 T Cells Is Predominantly Granule-Mediated With the Potency Dependent Upon T-Cell Receptor Avidity

Author:

Knight Robin R.1,Kronenberg Deborah12,Zhao Min3,Huang Guo Cai3,Eichmann Martin1,Bulek Anna4,Wooldridge Linda4,Cole David K.4,Sewell Andrew K.4,Peakman Mark12,Skowera Ania12

Affiliation:

1. Department of Immunobiology, King’s College London, London, United Kingdom

2. National Institute for Health Research comprehensive Biomedical Research Centre, Guy’s and St. Thomas’ National Health Service Foundation Trust and King’s College London, London, United Kingdom

3. Diabetes and Nutritional Science, King’s College London, London, United Kingdom

4. Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom

Abstract

The end-stage immunopathology of type 1 diabetes resulting in β-cell destruction appears to be strongly dominated by cytotoxic CD8 T lymphocytes (CD8 T cells). However, the mechanism of cytotoxicity used by autoreactive CD8 T cells in the human setting remains unknown. Using type 1 diabetes patient–derived preproinsulin-specific CD8 T-cell clones recognizing either an HLA-A2 (A*0201) or HLA-A24 (A*2402)-restricted epitope (peptide of preproinsulin [PPI]15–24, ALWGPDPAAA; or PPI3–11, LWMRLLPLL), we assessed the use of conventional mediators of cytotoxicity in the destruction of human β-cells in vitro compared with virus-specific cytotoxic CD8 T-cell clones. We show that PPI-specific CD8 T-cell clones are mainly reliant upon cytotoxic degranulation for inducing β-cell death. Furthermore, we find that in comparison with virus-specific CD8 T cells, there are differences in the killing potency of PPI-specific CD8 T cells that are not due to cell-intrinsic differences, but rather are mediated by differences in strength of signaling by peptide–HLA ligands. The study highlights the regulation of β-cell killing as a potential point for therapeutic control, including the possibility of blocking autoreactive CD8 T-cell function without impacting upon general immune competence.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3