Affiliation:
1. Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent protein deacetylase, regulates a host of target proteins, including peroxisome proliferator–activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional coregulator that binds to numerous transcription factors in response to deacetylation to promote mitochondrial biogenesis and oxidative metabolism. Our laboratory and others have shown that adipose triglyceride lipase (ATGL) increases the activity of the nuclear receptor PPAR-α, a PGC-1α binding partner, to promote fatty acid oxidation. Fatty acids bind and activate PPAR-α; therefore, it has been presumed that fatty acids derived from ATGL-catalyzed lipolysis act as PPAR-α ligands. We provide an alternate mechanism that links ATGL to PPAR-α signaling. We show that SIRT1 deacetylase activity is positively regulated by ATGL to promote PGC-1α signaling. In addition, ATGL mediates the effects of β-adrenergic signaling on SIRT1 activity, and PGC-1α and PPAR-α target gene expression independent of changes in NAD+. Moreover, SIRT1 is required for the induction of PGC-1α/PPAR-α target genes and oxidative metabolism in response to increased ATGL-mediated lipolysis. Taken together, this work identifies SIRT1 as a critical node that links β-adrenergic signaling and lipolysis to changes in the transcriptional regulation of oxidative metabolism.
Funder
National Institute of Diabetes and Digestive and Kidney Diseases
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献