Epitope Stealing as a Mechanism of Dominant Protection by HLA-DQ6 in Type 1 Diabetes

Author:

van Lummel Menno1,Buis David T.P.1,Ringeling Cherish1,de Ru Arnoud H.1,Pool Jos1,Papadopoulos George K.2,van Veelen Peter A.1,Reijonen Helena3,Drijfhout Jan W.1,Roep Bart O.13ORCID

Affiliation:

1. Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands

2. Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece

3. Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute, City of Hope, Duarte, CA

Abstract

The heterozygous DQ2/8 (DQA1*05:01-DQB1*02:01/DQA1*03:01-DQB1*03:02) genotype confers the highest risk in type 1 diabetes (T1D), whereas the DQ6/8 (DQA1*02:01-DQB1*06:02/DQA1*03:01-DQB1*03:02) genotype is protective. The mechanism of dominant protection by DQ6 (DQB1*06:02) is unknown. We tested the hypothesis that DQ6 interferes with peptide binding to DQ8 by competition for islet epitope (“epitope stealing”) by analysis of the islet ligandome presented by HLA-DQ6/8 and -DQ8/8 on dendritic cells pulsed with islet autoantigens preproinsulin (PPI), GAD65, and IA-2, followed by competition assays using a newly established “epitope-stealing” HLA/peptide-binding assay. HLA-DQ ligandome analysis revealed a distinct DQ6 peptide-binding motif compared with the susceptible DQ2/8 molecules. PPI and IA-2 peptides were identified from DQ6, of DQ6/8 heterozygous dendritic cells, but no DQ8 islet peptides were retrieved. Insulin B6-23, a highly immunogenic CD4 T-cell epitope in patients with T1D, bound to both DQ6 and DQ8. Yet, binding of InsB6-23 to DQ8 was prevented by DQ6. We obtained first functional evidence of a mechanism of dominant protection from disease, in which HLA molecules associated with protection bind islet epitopes in a different, competing, HLA-binding register, leading to “epitope stealing” and conceivably diverting the immune response from islet epitopes presented by disease-susceptible HLA molecules in the absence of protective HLA.

Funder

JDRF

European Union’s 7th Framework Programme

Netherlands Organisation for Scientific Research

Dutch Diabetes Research Foundation

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3