High-Glucose Environment Enhanced Oxidative Stress and Increased Interleukin-8 Secretion From Keratinocytes

Author:

Lan Cheng-Che E.123,Wu Ching-Shuang4,Huang Shu-Mei125,Wu I-Hui12,Chen Gwo-Shing12

Affiliation:

1. Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

2. Department of Dermatology, College of Medicine, Kaohsiung, Taiwan

3. Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan

4. Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan

5. Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.

Abstract

Impaired wound healing frequently occurs in patients with diabetes. Interleukin (IL)-8 production by keratinocyte is responsible for recruiting neutrophils during healing. Intense inflammation is associated with diabetic wounds, while reduction of neutrophil infiltration is associated with enhanced healing. We hypothesized that increased neutrophil recruitment by keratinocytes may contribute to the delayed healing of diabetic wounds. Using cultured human keratinocytes and a diabetic rat model, the current study shows that a high-glucose environment enhanced IL-8 production via epidermal growth factor receptor (EGFR)–extracellular signal–regulated kinase (ERK) pathway in a reactive oxygen species (ROS)-dependent manner in keratinocytes. In addition, diabetic rat skin showed enhanced EGFR, ERK, and IL-8 expression compared with control rats. The dermal neutrophil infiltration of the wound, as represented by expression of myeloperoxidase level, was also significantly higher in diabetic rats. Treating diabetic rats with dapsone, an agent known to inhibit neutrophil function, was associated with improved healing. In conclusion, IL-8 production and neutrophil infiltration are increased in a high-glucose environment due to elevated ROS level and contributed to impaired wound healing in diabetic skin. Targeting these dysfunctions may present novel therapeutic approaches.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3