Bone Morphogenetic Protein 4 and Smad1 Mediate Extracellular Matrix Production in the Development of Diabetic Nephropathy

Author:

Matsubara Takeshi1,Araki Makoto1,Abe Hideharu2,Ueda Otoya3,Jishage Kou-ichi3,Mima Akira2,Goto Chisato4,Tominaga Tatsuya2,Kinosaki Masahiko3,Kishi Seiji2,Nagai Kojiro2,Iehara Noriyuki1,Fukushima Naoshi3,Kita Toru5,Arai Hidenori6,Doi Toshio2

Affiliation:

1. Department of Nephrology, Kyoto University, Kyoto, Japan

2. Department of Nephrology, Tokushima University, Tokushima, Japan

3. Chugai Pharmaceutical Co., Ltd., Shizuoka, Japan

4. Chugai Research Institute for Medical Science, Inc., Shizuoka, Japan

5. Kobe City Medical Center General Hospital, Kyoto, Japan

6. National Center for Geriatrics and Gerontology, Aichi, Japan

Abstract

Diabetic nephropathy is the leading cause of end-stage renal disease. It is pathologically characterized by the accumulation of extracellular matrix in the mesangium, of which the main component is α1/α2 type IV collagen (Col4a1/a2). Recently, we identified Smad1 as a direct regulator of Col4a1/a2 under diabetic conditions in vitro. Here, we demonstrate that Smad1 plays a key role in diabetic nephropathy through bone morphogenetic protein 4 (BMP4) in vivo. Smad1-overexpressing mice (Smad1-Tg) were established, and diabetes was induced by streptozotocin. Nondiabetic Smad1-Tg did not exhibit histological changes in the kidney; however, the induction of diabetes resulted in an ∼1.5-fold greater mesangial expansion, consistent with an increase in glomerular phosphorylated Smad1. To address regulatory factors of Smad1, we determined that BMP4 and its receptor are increased in diabetic glomeruli and that diabetic Smad1-Tg and wild-type mice treated with a BMP4-neutralizing antibody exhibit decreased Smad1 phosphorylation and ∼40% less mesangial expansion than those treated with control IgG. Furthermore, heterozygous Smad1 knockout mice exhibit attenuated mesangial expansion in the diabetic condition. The data indicate that BMP4/Smad1 signaling is a critical cascade for the progression of mesangial expansion and that blocking this signal could be a novel therapeutic strategy for diabetic nephropathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3