Systemic β-Adrenergic Stimulation of Thermogenesis Is Not Accompanied by Brown Adipose Tissue Activity in Humans

Author:

Vosselman Maarten J.1,van der Lans Anouk A.J.J.1,Brans Boudewijn2,Wierts Roel2,van Baak Marleen A.1,Schrauwen Patrick1,van Marken Lichtenbelt Wouter D.1

Affiliation:

1. Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands

2. Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands

Abstract

Brown adipose tissue (BAT) is currently considered as a target to combat obesity and diabetes in humans. BAT is densely innervated by the sympathetic nervous system (SNS) and can be stimulated by β-adrenergic agonists, at least in animals. However, the exact role of the β-adrenergic part of the SNS in BAT activation in humans is not known yet. In this study, we measured BAT activity by 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography/computed tomography imaging in 10 lean men during systemic infusion of the nonselective β-agonist isoprenaline (ISO) and compared this with cold-activated BAT activity. ISO successfully mimicked sympathetic stimulation as shown by increased cardiovascular and metabolic activity. Energy expenditure increased to similar levels as during cold exposure. Surprisingly, BAT was not activated during β-adrenergic stimulation. We next examined whether the high plasma free fatty acid (FFA) levels induced by ISO competed with glucose ([18F]FDG) uptake in BAT locations by blocking lipolysis with acipimox (ACI). ACI successfully lowered plasma FFA, but did not increase [18F]FDG-uptake in BAT. We therefore conclude that systemic nonselective β-adrenergic stimulation by ISO at concentrations that increase energy expenditure to the same extent as cold exposure does not activate BAT in humans, indicating that other tissues are responsible for the increased β-adrenergic thermogenesis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3