Survey of the Human Pancreatic β-Cell G1/S Proteome Reveals a Potential Therapeutic Role for Cdk-6 and Cyclin D1 in Enhancing Human β-Cell Replication and Function In Vivo

Author:

Fiaschi-Taesch Nathalie1,Bigatel Todd A.1,Sicari Brian1,Takane Karen K.1,Salim Fatima1,Velazquez-Garcia Silvia1,Harb George1,Selk Karen1,Cozar-Castellano Irene1,Stewart Andrew F.1

Affiliation:

1. Division of Endocrinology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.

Abstract

OBJECTIVES To comprehensively inventory the proteins that control the G1/S cell cycle checkpoint in the human islet and compare them with those in the murine islet, to determine whether these might therapeutically enhance human β-cell replication, to determine whether human β-cell replication can be demonstrated in an in vivo model, and to enhance human β-cell function in vivo. RESEARCH DESIGN AND METHODS Thirty-four G1/S regulatory proteins were examined in human islets. Effects of adenoviruses expressing cdk-6, cdk-4, and cyclin D1 on proliferation in human β-cells were studied in both invitro and in vivo models. RESULTS Multiple differences between murine and human islets occur, most strikingly the presence of cdk-6 in human β-cells versus its low abundance in the murine islet. Cdk-6 and cyclin D1 in vitro led to marked activation of retinoblastoma protein phosphorylation and cell cycle progression with no induction of cell death. Human islets transduced with cdk-6 and cyclin D1 were transplanted into diabetic NOD-SCID mice and markedly outperformed native human islets in vivo, maintaining glucose control for the entire 6 weeks of the study. CONCLUSIONS The human G1/S proteome is described for the first time. Human islets are unlike their rodent counterparts in that they contain easily measurable cdk-6. Cdk-6 overexpression, alone or in combination with cyclin D1, strikingly stimulates human β-cell replication, both in vitro as well as in vivo, without inducing cell death or loss of function. Using this model, human β-cell replication can be induced and studied in vivo.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3