Affiliation:
1. Section of Cardiovascular and Thoracic Surgery, College of Medicine, University of Arizona Tucson, Arizona
2. Department of Pharmacology, College of Pharmacy and Health Sciences, Drake University Des Moines, Iowa
Abstract
Cardiovascular disease is excessive in diabetes, and blood cell function is altered. It is not clear, however, if alterations in the blood contribute to the excessive cardiovascular complications of this disease. In this study, we compared the contribution of nondiabetic and diabetic blood to myocardial reperfusion injury. The recovery of cardiac contractile function following no-flow ischemia was studied in isolated diabetic and nondiabetic rat hearts perfused with diabetic or nondiabetic diluted whole blood. Hearts were isolated from 10- to 12-week-old diabetic (streptozotocin, 65 mg/kg, i.v.) and nondiabetic rats and perfused with a Krebs-albumin-red cell solution (K2RBC, Hct 20%). After a 30-min pre-ischemic control period, during which cardiac pump function was evaluated, diabetic and nondiabetic hearts were perfused for 5 min with diluted whole blood (DWB; Hct 20%) collected from either diabetic or nondiabetic donor animals. Coronary flow was then stopped and the hearts subjected to 30 min of no-flow ischemia. Following ischemia, the hearts were reperfused with the K2RBC perfusate. Cardiac contractile function was evaluated throughout the 60-min reperfusion period. Six groups were studied: diabetic and nondiabetic hearts perfused before ischemia with either K2RBC, nondiabetic DWB (NDDWB), or diabetic DWB (DDWB). Perfusion with DWB prior to ischemia impaired the recovery of contractile function in all cases. The impairment to recovery was greater with DDWB than with NDDWB. Although diabetic hearts perfused with K2RBC throughout recovered quite well, the effect of DDWB perfusion in the diabetic hearts was dramatic. In an effort to determine why diabetic blood impaired functional recovery, measures of blood filterability and the generation of reactive oxygen species (ROS) were made. We found that diabetic blood was less filterable than nondiabetic blood; that is, the diabetic blood cells tended to plug the 5-μm filter pores more readily than the nondiabetic blood cells. Also, we found that the diabetic blood was capable of generating significantly greater ROS (oxygen free radicals) than nondiabetic blood (P < 0.05). These findings suggest that the blood contribution to myocardial reperfusion injury is amplified in diabetes. A tendency for diabetic blood cells to plug capillary-sized pores and show enhanced oxygen free radical production may account for the excessive contribution of diabetic blood to reperfusion injury in the heart.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献