Upregulation of Mesangial Growth Factor and Extracellular Matrix Synthesis by Advanced Glycation End Products Via a Receptor-Mediated Mechanism

Author:

Pugliese Giuseppe1,Pricci Flavia1,Romeo Giulio1,Pugliese Francesco1,Mené Paolo1,Giannini Stefano2,Cresci Barbara2,Galli Gianna2,Rotella Carlo M2,Vlassara Helen3,Mario Umberto Di4

Affiliation:

1. Department of Experimental Medicine, Chair of General Pathology, and 2nd Institute of Internal Medicine, Chairs of Endocrinology and Nephrology, La Sapienza University Rome, Italy

2. Department of Clinical Pathophysiology, Chairs of Endocrinology, and 3rd Institute of Internal Medicine, University of Florence Florence, Italy

3. Picower Institute for Medical Research Manhasset, New York

4. Department of Clinical and Experimental Medicine, Chair of Endocrinology, University of Reggio Calabria Catanzaro, Italy

Abstract

Enhanced advanced glycosylation end product (AGE) formation has been shown to participate in the patho-genesis of diabetes-induced glomerular injury by mediating the increased extracellular matrix (ECM) deposition and altered cell growth and turnover leading to mesangial expansion. These effects could be exerted via an AGE-receptor-mediated upregulation of growth factors, such as the IGFs and transforming growth factor-β (TGF-β). We tested this hypothesis in human and rat mesangial cells grown on nonglycated or native bovine serum albumin (BSA), glycated BSA with AGE formation (BSA-AGE), or glycated BSA in which AGE formation was prevented by the use of aminoguanidine (BSA-AM), in the presence or absence of an antibody, α-p60, directed against the p60/OST protein named AGE-receptor 1 (AGE-R1), or normal control (pre-immune) serum. The mRNA and/or protein levels of IGF-I, IGF-II, IGF receptors, IGF binding proteins (IGFBPs), TGF-β1 and the ECM components fibronectin, laminin, and collagen IV were measured, together with cell proliferation. Both human and rat mesangial cells grown on BSA-AGE showed increased IGF-I and total and bioac-tive TGF-β medium levels and enhanced IGF-I, IGF-II, and TGF-β1 gene expression, compared with cells grown on BSA, whereas total IGFBP and IGFBP-3 medium content, IGF receptor density and affinity, and IGF-I receptor transcripts were unchanged. Moreover, cells grown on BSA-AGE showed increased ECM protein and mRNA levels versus cells cultured on BSA, whereas cell proliferation was unchanged in human mesangial cells and slightly reduced in rat mesangial cells. Growing cells on BSA-AM did not affect any of the measured parameters. Co-incubation of BSA-AGE with anti-AGE-R1, but not with pre-immune serum, prevented AGE-induced increases in IGF-I, TGF-β1, and ECM production or gene expression; anti-AGE-R1 also reduced growth factor and matrix synthesis in cells grown on BSA. These results demonstrate that mesangial IGF and TGF-β1 synthesis is upregulated by AGE-modified proteins through an AGE-receptor-mediated mechanism. The parallelism with increased ECM production raises the speculation that the enhanced synthesis of these growth factors resulting from advanced nonen-zymatic glycation participates in the pathogenesis of hyperglycemia-induced mesangial expansion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3