Affiliation:
1. Molecular Nutrition Unit, Department of Nutrition, University of Montreal Medical School Montreal, Quebec, Canada
2. Département de Biochimie Médicale, Centre Médicale Universitaire, University of Geneva Geneva, Switzerland
3. Division of Diabetes and Metabolism, Boston University Medical School Boston, Massachusetts
Abstract
The mechanism whereby long-term exposure of the β-cell to fatty acids alters the β-cell response to glucose is not known. We hypothesized that fatty acids may alter β-cell function by changing the expression level of metabolic enzymes implicated in the regulation of insulin secretion, in particular acetyl-CoA carboxylase (ACC). This enzyme catalyzes the formation of malonyl-CoA, a key regulator of fatty acid oxidation. Using the β-cell line INS-1 as a model, the results show that the polyunsaturated fatty acid linoleate (C18:2) inhibited both basal and glucose-stimulated ACC mRNA induction. The inhibition was detected by 4–6 h, and a maximal 60% effect occurred at 12 h after cell exposure to the fatty acid. Linoleate, as glucose, did not modify the half-life of the ACC transcript. Prolonged exposure of INS-1 cells to linoleate also inhibited ACC protein accumulation at low and high glucose. The saturated fatty acids myristate (C14:0), palmitate (C16:0), and stearate (C18:0) were also effective as well as the monounsaturated oleate (C18:1) and the short-chain fatty acids butyrate (C4:0) and caproate (C6:0); longchain ω3 fatty acids were ineffective. The threshold concentration for long-chain fatty acids was 0.05 mmol/l, and maximal inhibition occurred at 0.3 mmol/l. 2-bromopalmitate, a nonmetabolizable analog, had no effect, suggesting that fatty acids must be metabolized to change ACC gene expression. Prolonged exposure of INS-1 cells to palmitate, oleate, and linoleate markedly altered the glucose-induced insulin response, resulting in high basal insulin release and a suppression of glucose-induced insulin secretion. This was associated with an exaggerated (twofold to threefold) rate of fatty acid oxidation at all tested glucose concentrations. The data provide a possible mechanism to at least partially explain how fatty acids cause β-cell insensitivity to glucose, i.e., by downregulating ACC with a resulting exaggerated fatty acid oxidation.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献