Interferon-γ Independently Activates the MHC Class I Antigen Processing Pathway and Diminishes Glucose Responsiveness in Pancreatic β-Cell Lines

Author:

Baldeón Manuel E1,Neece David J1,Nandi Dipankar2,Monaco John J2,Gaskins H Rex1

Affiliation:

1. Division of Nutritional Sciencesand the Department of Animal Sciences (D.J.N., H.R.G.), University of Illinois at Urbana-Champaign Urbana, Illinois

2. Department of Molecular Genetics (D.N., J.J.M.), Howard Hughes Medical Institute, University of Cincinnati Cincinnati, Ohio

Abstract

The mouse pancreatic βTC3 and βTC6-F7 cell lines were used to characterize the effects of interferon-γ (IFN-γ) on (β-cell phenotype and function. Initially, intracellular and secreted insulin were compared in glucose-stimulated cells over time. A significant reduction in insulin content and secretion was observed on a per-cell basis in glucose-stimulated βTC3 and βTC6-F7 cells after 12 h of exposure to IFN-γ. The steadystate level of pre-proinsulin mRNA expression was not affected by IFN-γ. Thus, we postulate that IFN-γ's inhibitory actions occur after transcription of preproinsulin genes. Time-course analysis of IFN-γ–regulated mRNA expression of the two intra-MHC-encoded subunits of the proteasome (low–molecular-mass polypeptide [Lmp]-2 and Lmp-7) revealed a correlation between their induction and the inhibitory effects of IFN-γ on glucose-stimulated insulin production. Increased expression of Lmp-2 and Lmp-7 mRNA was accompanied by a corresponding induction of LMP2 and LMP7 protein expression. Subsequently, major histocompatibility complex (MHC) class I cell-surface expression was significantly increased in IFN-γ–treated βTC3 and βTC6-F7 cells. Exposure of IFN-γ-treated β-cells to a peptide aldehyde inhibitor of the proteasome (MG132) significantly attenuated MHC class I cell-surface expression but did not prevent the negative effects of IFN-γ on glucose responsiveness. Enhanced expression of the MHC class I antigen processing and presentation pathway and diminished insulin production appear to be distinct pathological alterations in β-cells exposed to the insulitic cytokine IFN-γ.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3