Growth Factor Alterations in Advanced Diabetic Retinopathy: A Possible Role of Blood Retina Barrier Breakdown

Author:

Pfeiffer Andreas1,Spranger Joachim1,Meyer-Schwickerath Rolf2,Schatz Helmut1

Affiliation:

1. Department of Internal Medicine, Berufsgenossenschaftliche Kliniken Bergmannsheil, Ruhr-Universität Bochum 44789 Bochum, Germany

2. Department of Ophthalmology, Knappschaftskrankenhaus Langendreer, Ruhr-Universität Bochum 44789 Bochum, Germany

Abstract

Chronic hyperglycemia may cause growth factor alterations that are likely to participate in tissue remodeling typical for diabetic late complications. However, few details of such events are known. The ocular vitreous fluid allows studies of growth factor levels in human eyes (after vitrectomy). The vitreous is highly inert and protected by the blood-retina barrier and thus probably reflects growth factor production by the normal retina. Vitreous from patients with proliferative diabetic retinopathy (PDR) was compared with vitreous obtained from patients with nonproliferative eye disease and with vitreous from patients without diabetes but with marked neovascular proliferations due to ischemia. This design permits us to distinguish diabetes-related from non-diabetes-related alterations. Insulin-like growth factor I (IGF-I), IGF-II, IGF binding protein 2 (IGFBP-2), and IGFBP-3 were elevated 3-to 13-fold in nondiabetic retinal ischemia and 1.5- to 3-fold in PDR, indicating that the changes were not restricted to diabetes. These changes may partially be explained by leakage of serum into the vitreous, since IGFs and IGFBPs are 20- to 50-fold higher in serum than in vitreous, and vitreous protein content was 1.5-fold elevated in PDR subjects and 5-fold in ischemia patients compared with control subjects. TGF-β is a proposed antiangiogenic factor in the eye. TGF-β2 was the predominant subtype in vitreous, and its total amount was not altered in PDR patients. More importantly, the active fraction of TGF-β was decreased by 30 and 70% in PDR and nondiabetic retinal ischemia patients, respectively. Since plasmin may control TGF-β activation, the serum protein α2-antiplasmin was measured and found to be significantly elevated to 150 and 250% of control values in PDR and ischemia patients, respectively. Thus, influx of serum proteins due to microvascular disturbances and hypoxia is proposed as a possible cause for vitreous alterations of IGF-I and of active TGF-β. These changes seem to occur late in the sequence of events leading to PDR and are not specific for diabetes, but they were also observed in other diseases characterized by retinal hypoxia.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3