D-Glucose Stimulates Mesangial Cell GLUT1 Expression and Basal and IGF-I–Sensitive Glucose Uptake in Rat Mesangial Cells: Implications for Diabetic Nephropathy

Author:

Heilig Charles W12,Liu Yanan3,England Rebecca L3,Freytag Svend O4,Gilbert Jeffery D4,Heilig Kathleen O12,Zhu Min1,Concepcion Luis A1,Brosius Frank C3

Affiliation:

1. From the Department of Medicine, Division of Nephrology, Henry Ford Hospital Detroit

2. Department of Medicine, Division of Nephrology, University of Rochester School of Medicine Rochester, New York

3. Department of Medicine, Division of Nephrology, University of Michigan Medical School and Ann Arbor Veterans Affairs Hospital Ann Arbor, Michigan

4. Department of Radiation Oncology, Henry Ford Hospital Detroit

Abstract

The complications of diabetes arise in part from abnormally high cellular glucose uptake and metabolism. To determine whether altered glucose transporter expression may be involved in the pathogenesis of diabetic nephropathy, we investigated the effects of elevated extracellular glucose concentrations on facilitative glucose transporter (GLUT) expression in rat mesangial cells. GLUT1 was the only transporter isoform detected. Cells exposed to 20 mmol/1 glucose medium for 3 days demonstrated increases in GLUT1 mRNA (134%, P < 0.002), GLUT1 protein (68%, P < 0.02), and Vmax (50%, P < 0.05) for uptake of the glucose analog ]3H]2-deoxyglucose (3H2-DOG), when compared to cells chronically adapted to physiologic glucose concentrations (8 mmol/1). The increase in GLUT1 protein was sustained at 3 months, the latest time point tested (77% above control, P < 0.01). In contrast, hypertonic mannitol had no effect on GLUT1 protein levels. Insulin-like growth factor I (IGF-I; 30 ng/ml) increased the uptake of 3H2-DOG by 28% in 8 mmol/1 glucose-treated cells (P < 0.05) and by 75% in cells switched to 20 mmol/1 glucose for 3 days (P < 0.005). These increases in 3H2-DOG uptake occurred despite a lack of effect of IGF-I on GLUT1 protein levels (P > 0.5 vs. control). Therefore, hyperglycemia and IGF-I treatment both lead to increases in mesangial cell glucose uptake, and hyperglycemia induces increased GLUT1 expression, which can directly lead to the pathological changes of diabetic nephropathy. The effects of high glucose and of IGF-I to stimulate 3H2-DOG uptake also appear to be additive.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3