Neuroretinal Dysfunction With Intact Blood-Retinal Barrier and Absent Vasculopathy in Type 1 Diabetes

Author:

Reis Aldina123,Mateus Catarina1,Melo Pedro12,Figueira João123,Cunha-Vaz José123,Castelo-Branco Miguel1

Affiliation:

1. Visual Neuroscience Laboratory, Institute for Biomedical Imaging in Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

2. Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal

3. Coimbra University Hospital, Coimbra, Portugal

Abstract

It is unknown whether independent neural damage may occur in the pre-/absent vascular diabetic retinopathy (DR). To exclude vasculopathy, it is important to measure the integrity of the blood-retinal barrier (BRB). This cross-sectional study addressed this problem in type 1 diabetic patients with normal ocular fundus and absent breakdown of the BRB (confirmed with vitreous fluorometry). These were compared with a group with disrupted BRB (with normal fundus or initial DR) and normal controls. Multifocal electroretinography and chromatic/achromatic contrast sensitivity were measured in these 42 patients with preserved visual acuity. Amplitudes of neurophysiological responses (multifocal electroretinogram) were decreased in all eccentricity rings in both clinical groups, when compared with controls, with sensitivity >78% for a specificity level of 90%. Implicit time changes were also found in the absence of initial DR. Impaired contrast sensitivity along chromatic axes was also observed, and achromatic thresholds were also different between controls and both clinical groups. The pattern of changes in the group without baseline BRB permeability alterations, as probed by psychophysical and electrophysiological measurements, does thereby confirm independent damage mechanisms. We conclude that retinal neuronal changes can be diagnosed in type 1 diabetes, independently of the breakdown of the BRB and onset of vasculopathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3