Glutathione Synthesis Is Diminished in Patients With Uncontrolled Diabetes and Restored by Dietary Supplementation With Cysteine and Glycine

Author:

Sekhar Rajagopal V.12,McKay Siripoom V.34,Patel Sanjeet G.12,Guthikonda Anuradha P.12,Reddy Vasumathi T.12,Balasubramanyam Ashok12,Jahoor Farook34

Affiliation:

1. Translational Metabolism Unit, Baylor College of Medicine, Houston, Texas;

2. Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas;

3. Department of Pediatrics, Baylor College of Medicine, Houston, Texas;

4. Children's Nutrition Research Center, Agriculture Research Service, U.S. Department of Agriculture, Baylor College of Medicine, Houston, Texas.

Abstract

OBJECTIVE Sustained hyperglycemia is associated with low cellular levels of the antioxidant glutathione (GSH), which leads to tissue damage attributed to oxidative stress. We tested the hypothesis that diminished GSH in adult patients with uncontrolled type 2 diabetes is attributed to decreased synthesis and measured the effect of dietary supplementation with its precursors cysteine and glycine on GSH synthesis rate and oxidative stress. RESEARCH DESIGN AND METHODS We infused 12 diabetic patients and 12 nondiabetic control subjects with [2H2]-glycine to measure GSH synthesis. We also measured intracellular GSH concentrations, reactive oxygen metabolites, and lipid peroxides. Diabetic patients were restudied after 2 weeks of dietary supplementation with the GSH precursors cysteine and glycine. RESULTS Compared with control subjects, diabetic subjects had significantly higher fasting glucose (5.0 ± 0.1 vs. 10.7 ± 0.5 mmol/l; P < 0.001), lower erythrocyte concentrations of glycine (514.7 ± 33.1 vs. 403.2 ± 18.2 μmol/l; P < 0.01), and cysteine (25.2 ± 1.5 vs. 17.8 ± 1.5 μmol/l; P < 0.01); lower concentrations of GSH (6.75 ± 0.47 vs. 1.65 ± 0.16 μmol/g Hb; P < 0.001); diminished fractional (79.21 ± 5.75 vs. 44.86 ± 2.87%/day; P < 0.001) and absolute (5.26 ± 0.61 vs. 0.74 ± 0.10 μmol/g Hb/day; P < 0.001) GSH synthesis rates; and higher reactive oxygen metabolites (286 ± 10 vs. 403 ± 11 Carratelli units [UCarr]; P < 0.001) and lipid peroxides (2.6 ± 0.4 vs. 10.8 ± 1.2 pg/ml; P < 0.001). Following dietary supplementation in diabetic subjects, GSH synthesis and concentrations increased significantly and plasma oxidative stress and lipid peroxides decreased significantly. CONCLUSIONS Patients with uncontrolled type 2 diabetes have severely deficient synthesis of glutathione attributed to limited precursor availability. Dietary supplementation with GSH precursor amino acids can restore GSH synthesis and lower oxidative stress and oxidant damage in the face of persistent hyperglycemia.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3