Defective Metabolism of Oxidized Phospholipid by HDL From People With Type 2 Diabetes

Author:

Mastorikou Maria1,Mackness Mike1,Mackness Bharti1

Affiliation:

1. University Department of Medicine, Manchester Royal Infirmary, Manchester, U.K

Abstract

HDL protects against atherosclerosis development. Defective functioning of HDL in type 2 diabetes may be one cause of increased cardiovascular disease associated with type 2 diabetes. HDL modulates LDL oxidation through the action of paraoxonase-1 (PON1), which is one of the major mechanisms by which HDL is antiatherogenic. We have compared the ability of HDL from people with type 2 diabetes (n = 36) with no coronary heart disease (CHD) to metabolize oxidized palmitoyl arachidonyl phosphatidylcholine (ox-PAPC), a major product of LDL oxidation and a PON1 substrate, with that of HDL isolated from healthy control subjects (n = 19) and people with CHD but no diabetes (n = 37). HDL from people with type 2 diabetes metabolized 11% less ox-PAPC, and HDL from people with CHD metabolized 6% less, compared with HDL from control subjects (both P < 0.01). The ability of HDL from control and type 2 diabetic subjects containing the PON1-192RR alloform to metabolize ox-PAPC was significantly reduced compared with PON1-192QQ or QR genotypes (P < 0.05). The defective ability of HDL to metabolize ox-PAPC was reflected in a significant increase in circulating plasma oxidized LDL concentration in the two patient groups (37 ± 5, 53 ± 7, and 65 ± 7 mmol/l for control, CHD, and type 2 diabetic subjects, respectively; P < 0.001), with PON1-192RR genotype carriers having the highest concentrations. In the control group, there was a significant negative correlation between serum PON1 activity and oxidized LDL concentration (r = 0.856, P < 0.001); however, this correlation was not evident in the patient groups. HDL from type 2 diabetic subjects without CHD had a decreased ability to metabolize oxidized phospholipids, which could lead to increased susceptibility to develop cardiovascular disease.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3