Establishment and Validation of a Risk Prediction Model for Early Diabetic Kidney Disease Based on a Systematic Review and Meta-Analysis of 20 Cohorts

Author:

Jiang Wenhui1,Wang Jingyu1,Shen Xiaofang1,Lu Wenli2,Wang Yuan2,Li Wen2,Gao Zhongai1,Xu Jie1,Li Xiaochen1,Liu Ran1,Zheng Miaoyan1,Chang Bai1,Li Jing1,Yang Juhong1ORCID,Chang Baocheng1ORCID

Affiliation:

1. NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China

2. Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, Tianjin, China

Abstract

BACKGROUND Identifying patients at high risk of diabetic kidney disease (DKD) helps improve clinical outcome. PURPOSE To establish a model for predicting DKD. DATA SOURCES The derivation cohort was from a meta-analysis. The validation cohort was from a Chinese cohort. STUDY SELECTION Cohort studies that reported risk factors of DKD with their corresponding risk ratios (RRs) in patients with type 2 diabetes were selected. All patients had estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio (UACR) <30 mg/g at baseline. DATA EXTRACTION Risk factors and their corresponding RRs were extracted. Only risk factors with statistical significance were included in our DKD risk prediction model. DATA SYNTHESIS Twenty cohorts including 41,271 patients with type 2 diabetes were included in our meta-analysis. Age, BMI, smoking, diabetic retinopathy, hemoglobin A1c, systolic blood pressure, HDL cholesterol, triglycerides, UACR, and eGFR were statistically significant. All these risk factors were included in the model except eGFR because of the significant heterogeneity among studies. All risk factors were scored according to their weightings, and the highest score was 37.0. The model was validated in an external cohort with a median follow-up of 2.9 years. A cutoff value of 16 was selected with a sensitivity of 0.847 and a specificity of 0.677. LIMITATIONS There was huge heterogeneity among studies involving eGFR. More evidence is needed to power it as a risk factor of DKD. CONCLUSIONS The DKD risk prediction model consisting of nine risk factors established in this study is a simple tool for detecting patients at high risk of DKD.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3