The Transforming Growth Factor-β Pathway Is a Common Target of Drugs That Prevent Experimental Diabetic Retinopathy

Author:

Gerhardinger Chiara1,Dagher Zeina1,Sebastiani Paola2,Park Yong Seek1,Lorenzi Mara1

Affiliation:

1. Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts;

2. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.

Abstract

OBJECTIVE Prevention of diabetic retinopathy would benefit from availability of drugs that preempt the effects of hyperglycemia on retinal vessels. We aimed to identify candidate drug targets by investigating the molecular effects of drugs that prevent retinal capillary demise in the diabetic rat. RESEARCH DESIGN AND METHODS We examined the gene expression profile of retinal vessels isolated from rats with 6 months of streptozotocin-induced diabetes and compared it with that of control rats. We then tested whether the aldose reductase inhibitor sorbinil and aspirin, which have different mechanisms of action, prevented common molecular abnormalities induced by diabetes. The Affymetrix GeneChip Rat Genome 230 2.0 array was complemented by real-time RT-PCR, immunoblotting, and immunohistochemistry. RESULTS The retinal vessels of diabetic rats showed differential expression of 20 genes of the transforming growth factor (TGF)-β pathway, in addition to genes involved in oxidative stress, inflammation, vascular remodeling, and apoptosis. The complete loop of TGF-β signaling, including Smad2 phosphorylation, was enhanced in the retinal vessels, but not in the neural retina. Sorbinil normalized the expression of 71% of the genes related to oxidative stress and 62% of those related to inflammation. Aspirin had minimal or no effect on these two categories. The two drugs were instead concordant in reducing the upregulation of genes of the TGF-β pathway (55% for sorbinil and 40% for aspirin) and apoptosis (74 and 42%, respectively). CONCLUSIONS Oxidative and inflammatory stress is the distinct signature that the polyol pathway leaves on retinal vessels. TGF-β and apoptosis are, however, the ultimate targets to prevent the capillary demise in diabetic retinopathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference53 articles.

1. Diabetic retinopathy: a clinical overview;Davis;Diabetes Care,1992

2. Increased expression of basement membrane collagen in human diabetic retinopathy;Roy;J Clin Invest,1994

3. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy;Mizutani;J Clin Invest,1996

4. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus;The Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group;JAMA,2002

5. Mechanisms and strategies for prevention in diabetic retinopathy;Lorenzi;Curr Diab Rep,2006

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3