Dynamic Changes in Pancreatic Endocrine Cell Abundance, Distribution, and Function in Antigen-Induced and Spontaneous Autoimmune Diabetes

Author:

Pechhold Klaus1,Zhu Xiaolong1,Harrison Victor S.1,Lee Janet1,Chakrabarty Sagarika1,Koczwara Kerstin12,Gavrilova Oksana3,Harlan David M.1

Affiliation:

1. Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; the

2. Institute for Diabetes Research, Research Group for Diabetes at the Helmholtz Center, Munich, Germany; and the

3. Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.

Abstract

OBJECTIVE Insulin deficiency in type 1 diabetes and in rodent autoimmune diabetes models is caused by β-cell–specific killing by autoreactive T-cells. Less is known about β-cell numbers and phenotype remaining at diabetes onset and the fate of other pancreatic endocrine cellular constituents. RESEARCH DESIGN AND METHODS We applied multicolor flow cytometry, confocal microscopy, and immunohistochemistry, supported by quantitative RT-PCR, to simultaneously track pancreatic endocrine cell frequencies and phenotypes during a T-cell–mediated β-cell–destructive process using two independent autoimmune diabetes models, an inducible autoantigen-specific model and the spontaneously diabetic NOD mouse. RESULTS The proportion of pancreatic insulin-positive β-cells to glucagon-positive α-cells was about 4:1 in nondiabetic mice. Islets isolated from newly diabetic mice exhibited the expected severe β-cell depletion accompanied by phenotypic β-cell changes (i.e., hypertrophy and degranulation), but they also revealed a substantial loss of α-cells, which was further confirmed by quantitative immunohistochemisty. While maintaining normal randomly timed serum glucagon levels, newly diabetic mice displayed an impaired glucagon secretory response to non–insulin-induced hypoglycemia. CONCLUSIONS Systematically applying multicolor flow cytometry and immunohistochemistry to track declining β-cell numbers in recently diabetic mice revealed an altered endocrine cell composition that is consistent with a prominent and unexpected islet α-cell loss. These alterations were observed in induced and spontaneous autoimmune diabetes models, became apparent at diabetes onset, and differed markedly within islets compared with sub–islet-sized endocrine cell clusters and among pancreatic lobes. We propose that these changes are adaptive in nature, possibly fueled by worsening glycemia and regenerative processes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3